
MATHEMATICAL MODELS OF EMERGENT AND

RE-EMERGENT INFECTIOUS DISEASES: ASSESSING

THE EFFECTS OF PUBLIC HEALTH

INTERVENTIONS ON DISEASE SPREAD

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Gerardo Chowell-Puente

January 2005



c© 2005 Gerardo Chowell-Puente

ALL RIGHTS RESERVED



MATHEMATICAL MODELS OF EMERGENT AND RE-EMERGENT

INFECTIOUS DISEASES: ASSESSING THE EFFECTS OF PUBLIC HEALTH

INTERVENTIONS ON DISEASE SPREAD

Gerardo Chowell-Puente, Ph.D.

Cornell University 2005

Communicable diseases have long been recognized as a continuous threat to hu-

mans. Hence, understanding the underlying mechanisms by which diseases spread

and cause epidemics is key for their control. This dissertation is concerned with

the development of new mathematical models for the spread of infectious diseases

and the effects of Public Health interventions.

In Chapter I, a mathematical model for the 2003 Severe Acute Respiratory Syn-

drome outbreaks in Toronto, Hong Kong and Singapore is developed. In Toronto,

our model predicted control in late April by the identification of the nonexponen-

tial dynamics in the rate of increase of the number of cases. The reproductive

number is estimated to be approximately 1.2. Our model predicts that 20% of

the population in Toronto could have been infected without control interventions.

In Chapter II, an uncertainty and sensitivity analysis is performed on the basic

reproductive number.

In Chapter III, a novel mathematical model for Ebola spread is developed.

Ebola outbreaks have been observed in African regions since 1976. Our model



includes a smooth transition in the transmission rate at the time when interven-

tions are put in place. We evaluate the effects of interventions and estimate the

reproductive number.

In Chapter IV, Foot-and-Mouth disease (FMD) epidemics are modeled using

spatial deterministic epidemic model. FMD is a highly infectious illness of live-

stock. Our model is compared to its non-spatial counterpart. We assess the effec-

tiveness of the contingency plan implemented during the epidemic and explore the

expected impact of a mass vaccination policy depending on when it is implemented.

In Chapter V, we analyzed from a network point of view the cumulative and

aggregated data generated from the simulated movements of 1600,000 individuals

generated by TRANSIMS (Transportation Analysis and Simulation System de-

veloped at Los Alamos National Laboratories) during a typical day in Portland,

Oregon. The node out-degree, the out-traffic, and the total out-traffic follow power

law behavior. The resulting weighted graph is a “small world” and has scaling laws

consistent with an underlying hierarchical structure. We also explore the time evo-

lution of the largest connected component and the distribution of the component

sizes.
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Chapter 1

SARS Outbreaks in Ontario, Hong Kong

and Singapore: The Role of Diagnosis

and Isolation as a Control Mechanism *
Severe acute respiratory syndrome (SARS) is a new respiratory disease which was

first identified in China’s southern province of Guangdong. SARS is not merely

a local endemic disease: it poses a serious risk to the medical community, is a

threat to international travelers, is having a substantial negative economic impact

in parts of East Asia and is spreading world-wide. The serious danger SARS poses

to the medical community is illustrated by the numerous cases of transmission to

health-care workers. Startlingly, the man who awakened the world to the dangers

of SARS, Dr. Carlo Urbani, succumbed to the disease. Cases of transmission

between aircraft passengers are suspected, and relatively short visits to epidemic

regions have resulted in infection. The most striking feature of SARS, however,

has proven to be its ability to rapidly spread on a global scale. One man with

SARS made 7 flights: from Hong Kong to Münich to Barcelona to Frankfurt to

London, back to Münich and Frankfurt before finally returning to Hong Kong [12].

Another individual, a 26-year-old airport worker, appears to have transmitted the

disease to 112 people [13]. Clearly, there is an unfortunate interaction between the

incubation period of the virus, the widely distributed severity and infectiousness

of SARS in different people and the speed and volume of passenger air travel.

∗G. Chowell , P. W. Fenimore, M. A. Castillo-Garsow and C. Castillo-Chavez.
SARS Outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and
isolation as a control mechanism. J. Theor. Biol. 24, 1-8 (2003).
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The adverse economic impact in parts of East Asia far exceeds the disruption of

previous outbreaks of avian influenza, earning comparison with the 1998 financial

market crisis in that part of the world [14, 15, 16]. Although the causative agent

of SARS has been determined [17, 18], a detailed understanding of the causative

virus’ pathogenticity and routes of transmission and the dynamics of the epidemic

is still at a very early stage. It is uncertain how the virus is transmitted: by droplet

or airborne transmission or person-to-person contact. The recent development of

laboratory tests promises to improve the epidemiological situation somewhat [19].

SARS is a public health crisis on a scale rarely seen. The obvious question in

such a crisis is, “can SARS be contained?” In this study, we report transmission

parameters and epidemic dynamics from a model based on classes of people who are

susceptible, exposed, infectious, diagnosed, and recovered (“SEIJR”) that includes

the effect of patient isolation. Our model is consistent with the possibility of

containment in Toronto, Ontario.

1.1 SARS epidemiology and related issues

SARS was first identified in November 2002 in the Guongdong Province of China

[20]. By February 26, 2003 officials in Hong Kong reported their first cases of

SARS and no later than March 14th of this year the virus reached Canada [21]. As

of April 17th, Canada is the only location outside of Asia which has seen deaths as

a result of SARS (13 so far) [22]. U. S. health officials are currently investigating

199 cases in 34 states (Apri 17, 2003) [23].

An individual exposed to SARS may become infectious after an incubation

period of 2 − 7 days (or longer) [24] with 3 − 5 days being most common [25].

Most infected individuals either recover, typically after 7 to 10 days, or suffer 4%
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mortality or higher [26, 27, 28]. SARS appears to be most serious in people over

age 40, especially those who have other medical problems such as heart or liver

disease. Its symptoms are similar to pneumonia or other respiratory ailments and

include a high fever (≥ 38◦ C), shortness of breath, dry cough, headache, stiff

or achy muscles, fatigue and diarrhea [29]. These symptoms, however, are not

uniform. In the US, for example, the disease seems to be a milder one than in Asia

[30]. The result has been that SARS was, and for the moment remains, a diagnosis

of exclusion.

Presently, there is no treatment for SARS [31] and diagnostic tests are just

becoming available [19]. The mortality rate is reported to be 4% or higher world-

wide[27, 28]. Experts estimate that between 80 and 90 percent of people with SARS

recover without medical intervention, while the condition of the remaining victims

requires medical care [29]. As of April 17, 2003, the World Health Organization

(WHO) reported 3, 389 cases (a mixture of probable or suspected cases) in 26

countries. 165 victims are reported to have died [23].

Although researchers in the Erasmus Medical Center in Rotterdam recently

demonstrated that a coronavirus (some of which produce common colds) is the

causative agent of SARS, the mode of transmission still remains unknown [23].

The current hypothesis is that SARS is transmitted mainly by close person-to-

person contact which may explain the relatively slow transmission scale. However,

it could also be transmitted through contaminated objects, air or by other unknown

ways [32]. It is also a mystery how the disease originated, whether in birds, pigs

or other animals, nor is it known if the origin is rural or urban [33].

In this article, a simple model for SARS outbreaks is formulated (see [34]). The

model is used in conjunction with global and local SARS data to estimate the initial
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growth rate of the SARS epidemic. These rates are used to estimate SARS’ basic

reproductive number, R0, the classical epidemiological measure associated with the

reproductive power of a disease. R0 estimates the average number of secondary

cases of infection generated by a typical infectious individual in a population of

susceptibles [35] and hence, it is used to estimate the initial growth of a SARS

outbreak. We estimate (using data from Ontario, Hong Kong and Singapore)

that R0 is about 1.2. This value is not too different from past estimates of R0

for influenza (see [36]) despite the fact that superspreaders of SARS have been

identified. In fact, the parameter values resulting on this R0, on our population-

scaled model, can lead to extremely high levels of infection). We show, via simple

extrapolation, that the estimated rate of growth is consistent with the reported

date for the first cases of SARS in Hong Kong, however the first cases in Toronto

may be several weeks earlier than the February 23 date of the first case reported

by the Canadian Health Ministries [5]. Our best “rough” estimate for Toronto is

that the first case occurred sometime around January 29th, and not later than

February 28th. The data for Hong Kong are fitted by fixing the parameters k, δ

and γ1 based on estimates of the observed rates for the corresponding processes.

The growth rate β is estimated from observed “model-free” exponential growth

in Singapore and Hong Hong. The average diagnostic rate α and the measure of

heterogeneity between the two susceptible classes p and the effectiveness of patient

isolation measures (related to l) are then varied to fit the initial data for Hong

Kong and Singapore. To model the data in Toronto, we must postulate that the

parameters describing the rate of diagnosis (α) and isolation (l) in the Canadian

outbreak changed radically on March 27. Two hospitals in Toronto were closed

about that time: Scarborough Grace Hospital on March 25th and York Central
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Hospital on March 28th [37]. The remainder of this article is organized as follows:

Section 4 introduces the basic model and gives an approximate formula for R0 in the

special case where class E only makes a minor contribution to basic reproductive

rate; Section 5 describes the results of simulations and connections to data; and,

Section 6 collects our final thoughts.

1.2 SARS’ Transmission Model

U. S. data is limited and sparsely distributed [38, 39] while the quality of China’s

data is hard to evaluate [40]. On the other hand, there appears to be enough

data for Toronto [5], Singapore and Hong Kong [4] to make limited preliminary

predictions using a model that includes the effects of suspected mechanisms for the

spread of SARS. Limited data and inconclusive epidemiological information place

severe restrictions on efforts to model the global spread of the SARS etiological

agent.

Thus, we model single outbreaks, ignoring demographic processes other than

the impact of SARS on survival. The model is applied to data from Toronto, Hong

Kong and Singapore. Because the outbreak dynamics in Singapore and Hong Kong

are different from those in Toronto, some of the results may only be indicative of

what is happening in those regions of the world (in particular our parameters α and

l may change). The situation must be re-evaluated frequently as SARS continues

its travels around the world.

Here we describe a model that incorporates, in a rather crude way, some of

the important characteristics suggested in the literature (unequal susceptibility,

symptomatic and asymptomatic individuals, mode of transmission, superspread-

ers, etc.) [32, 41, 42, 38]. The goal is to use the results for single outbreaks as
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a first step in our efforts to gauge the global impact of SARS. Hence, we focus

on three “closed” populations (Southern Ontario (Toronto), Singapore and Hong

Kong) and postulate differences in the degree of susceptibility to SARS [13, 29].

These differences may be due to variations in contact rates, age-dependent suscep-

tibility or “unknown” genetic factors. This last assumption is handled (in a rather

crude and arbitrary way) via the introduction of two distinct susceptible classes:

S1, the most susceptible, and S2, less so. Initially, S1 = ρN and S2 = (1 − ρ)N

where ρ is the proportion of the population size N that is initially at higher risk of

SARS infection. The parameter p is a measure of reduced susceptibility to SARS

in class S2 [29, 13]. E (“exposed”) denotes the class composed of asymptomatic,

possibly infectious (at least some of the time) individuals. Typically, it takes some

time before asymptomatic infected individuals become infectious. The possibility

of limited transmission from class E is included, in a rather crude way, via the

parameter q (see Table 1). The class I denotes infected, symptomatic, infectious,

and undiagnosed individuals. I-individuals move into the diagnosed class J at the

rate α. Individuals recover at the rates γ1 (I class) and γ2 (J class). The rate δ

denotes SARS’ disease-induced mortality. The classes R is included to keep track

of the cumulative number of diagnosed and recovered, respectively. Furthermore,

it is assumed that diagnosed individuals are handled with care. Hence, they might

not be (effectively) as infectious as those who have not been diagnosed (if l is

small). The parameter l takes into account their reduced impact on the transmis-

sion process (small l represents effective measures taken to isolate diagnosed cases

and visa versa). Table 1 includes parameters’ definitions and the initial values

used. Our SARS epidemiological model is given by the following nonlinear system

of differential equations:
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Ṡ1 = −βS1
(I+qE+lJ)

N ,

Ṡ2 = −βpS2
(I+qE+lJ)

N ,

Ė = β(S1 + pS2)
(I+qE+lJ)

N − kE,

İ = kE − (α+ γ1 + δ)I,

J̇ = αI − (γ2 + δ)J,

Ṙ = γ1I + γ2J,

(1.1)

which is refered to as “SEIJR,” after the variables used to name the classes (Figure

5.3).

The values of p and q are not known and are fixed arbitrarily while l and α are

varied and optimized to fit the existing data (least-squares criterion) for Hong

Kong, Singapore and Toronto. We did not explored the sensitivity of the model

to variations in p and q because they are not known and cannot be controlled. All

other parameters were roughly estimated from data [5, 4] and current literature

[32, 24, 25, 26]. In particular, the transmission rate β is calculated from the

dominant root of the third order equation obtained from the linearization around

the disease-free equilibrium [35]. The parameters l and α were allowed to vary

when fitting the data for each location (Singapore, Hong Kong and Toronto).

Some restrictions apply, for example, the value of α > γ1. We also require that

1/γ2 = 1/γ1 − 1/α, a statement that members of the diagnosed class J recover at

the same rate as members of the undiagnosed class I. 1/γ1 has been reported to

be between 7 and 10 days [27, 26].
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Figure 1.1: A schematic representation of the flow of individuals between the
different classes. The model considers two distinct susceptible classes: S1, the most
susceptible, and S2. β

I+qE+lJ
N is the transmission rate to S1 from E, I and J . p is

a measure of reduced susceptibility to SARS in class S2. E is the class composed
of asymptomatic, possibly infectious individuals. The class I denotes infected,
symptomatic, infectious, and undiagnosed individuals. I-individuals move into
the diagnosed class J at the rate α. Individuals recover from class I at the rate
γ1 and γ2 from the J class. The rate δ is SARS’ disease-induced mortality. The
classes R and D are included to keep track of the cumulative number of diagnosed,
recovered and dead individuals, respectively. The quantity C is for comparison
with epidemiological statistics; it tracks the total number of diagnosed individuals.



9

Table 1.1: Parameter definitions and values that fit the cumulative number of cases
in class J (“diagnosed”) for Hong Kong. These parameters are used to compute
the basic reproductive number R0.

Parameter Definition Value

β Transmission rate per day 0.75

q Relative measure of infectiousness for class E 0.1

l Relative measure of reduced risk for class J 0.38

p Relative measure of reduced risk for class S2 0.1

1/k Mean incubation period (days) 3

1/α Mean time before diagnosis (days) 3

1/γ1 Mean time before recovery (days) 8

1/γ2 Mean time before recovery for class J (days) 5

δ SARS-induced mortality per day 0.006

ρ Proportion of the population at higher risk 0.4

From the second generator approach [35], we obtain the following expression for

the basic reproductive number:

R0 = {β [ρ+ p(1 − ρ)]}
{

q
k + 1

α+γ1+δ + αl
(α+γ1+δ)(γ2+δ)

}
(1.2)

which can be easily given an epidemiological interpretation (see Appendix). The

use of parameters estimated from Hong Kong (Table 5.1) gives a values of R0 = 1.2

(Hong Kong) and R0 = 1.2 (Toronto, assuming exponential growth) and R0 = 1.1

(Singapore).
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Figure 1.2: The cumulative number of SARS cases from March 31 to April 14
(lin-log scale) for the World (top data), Hong Kong(second row), Ontario, Canada
(fourth row), all of Canada (third row) and Singapore (bottom row). The data were
obtained from WHO [4] except for the Canadian data which are from the Canadian
Ministry of Health [5]. The Ontario data includes suspected and probable cases
since March 31. This inclusion explains the jump in the data for Ontario on March
31st. The rates of growth of the SARS outbreak (computed using data from March
31 to April 14) are: 0.041 (world), 0.050 (Hong Kong), 0.037 (Singapore), 0.054
(Canada) and 0.054 (Ontario).

1.3 Simulation Results

Initial rates of growth for SARS outbreaks in different parts of the world (see

Figure 1.2) are computed using the data provided by WHO [4] and the Canadian

Ministry of Health [5]. These rates are computed exclusively from the number of

cases reported between March 31 and April 14. The values obtained are 0.0405

(world data), 0.0496 (Hong Kong), 0.054 (Canada), 0.054 (Toronto) and 0.037

(Singapore).
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Table 1.2: Estimated starting times of the SARS outbreak

Country Estim. start of the outbreak

Canada February 1st

Hong Kong November 20th

Singapore December 6th

World data November 5th

For our numerical simulations, we start with an infectious individual (not yet

diagnosed, I(0) = 1) and crude estimates for the start of SARS outbreaks (t0) are

obtained from the formula t0 = t− (1
r log(x(t))), which assumes initial exponential

growth (r, the estimated “model-free” rate of growth from the time series x(t) of the

cumulative number of SARS cases). Results for Toronto, Hong Kong, Singapore

and aggregated world data are shown in Table 5.2. The estimated “world” start

of the outbreak is November 5, a date consistent with the fact that the first SARS

case was detected in Guangdong, China in November [20]. These dates are used

as the starting time of the respective outbreaks.

For the case of the Province of Ontario, Canada the total population N is ap-

proximately 12 million. We assume that the population at major risk of SARS

infection lives in Ontario’s southern part (particularly Toronto), and is approxi-

mately 40% of the total population (ρ = 0.4 in our model). It is worth pointing out

that this value of ρ is not critical (that is, the most sensitive) in the model. The

“model-free” approximately exponential growth rates for the various regions of the

world are roughly similar except for Canada from March 31st (day 61) to April 6th

(beginning the day of the jump in the number of reported Canadian cases), the

number of diagnosed cases grew ∼ exp(0.081t), where t is measured in days. This
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rate is substantially higher than elsewhere in the world. In the subsequent week

(beginning April 7th, day 68) the number of probable or suspected Canadian cases

rapidly rolls over to a smaller growth rate not too far from the rest of the world

(Figure 5.4). We conclude, based on the coincidence of the Canadian hospital clo-

sures, the jump in the reported number of Canadian SARS cases on March 31st

and the rapid rise in recognized cases in the following week, that Canadian doc-

tors were rapidly diagnosing pre-existing cases of SARS (in either class E or I on

March 26th). If we make the assumption that the fundamental disease spreading

parameters other than α and l are roughly constant throughout the world prior to

March 26th, we can reach two important conclusions. Beginning on March 26th,

in Toronto:

• α changed from a number 1/α ≈ 1/γ1 − 2 ≈ 6 days to 1/α1 ≤ 3 days, and

• l changed from an uncertain and relatively large value l > 1/2 to l ≤ 0.1.

If we assume that the fundamental growth rate β is essentially constant from

one region of the world to another, it is difficult for our model to produce growth

rates r well above the world average, except as a transient response to differences

in diagnostic rate α (due to delays in response or change in policy). Similarly, the

SEIJR model requires fairly small values of l to achieve a rapid roll-over in the

growth rate of recognized cases. The parametric details of how a “second” initial

condition for Toronto on March 26th is generated do not affect the qualitative

aspect of this argument: the Canadian data prior to March 31st (the day of the

large jump) are probably not as meaningful as data after that date, and hence

only bound the model from below prior to March 26th. The essential aspect of

this before-and-after hospital closure argument is that there were substantially
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Table 1.3: Long-time model results for Ontario, Canada, assuming various changes
in behavior on March 26th, 2003.

l α Infected with SARS Diagnosed with SARS

0.05 1/3 0.0077% 0.0055%

0.30 1/3 18% 13%

0.05 1/6 21% 13%

more undiagnosed people in classes E and I than in class J on March 26th. This

is a reasonable assumption given that the number of cases reported by Canadian

officials more than double from March 30th to March 31st. The introduction of

behavioral changes starting on March 26 (t = 57 days),alters the fate of the disease

in a dramatic fashion (see Table 5.3).

Fitting the model to the Hong Kong and Singapore data is carried out in

a similar fashion with ρ = 0.4, (Hong Kong has about 7.5 million inhabitants,

Singapore 4.6 million). The estimated transmission rate from Hong Kong data

is β ≈ 0.75 and for Singapore β ≈ 0.68. Both Hong Kong and Singapore’s data

are fit with the value q = 0.1. Hong Kong and Singapore’s measure of contact

between diagnosed SARS cases and susceptibles are l = 0.38 and 0.40, respectively

(see Figure 4). Even though there is some heterogeneity in the parameters for

Hong Kong and Singapore, they provide an important calibration of our model.

Their values for l and α are roughly consistent with each other, indicating that

the difference with Toronto is significant within our model, and pointing to the

joint importance of rapid diagnosis α ≈ 1 and good isolation of diagnosed patients

l ≈ 0 in controlling an outbreak. While there is some indication in the data from

Hong Kong of a possible slowing of the outbreak, we did not attempt to analyze

the slowing or assess its significance.
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Figure 1.3: The circles are the cumulative number of suspected or probable SARS
cases in Ontario beginning on day 61 (March 31st, the day of the jump) and the
number of probable cases up until day 60. The lines are the cumulative number
of “diagnosed” cases C from the SEIJR model. The fit to the data is given by a
change in the values of α and l on March 26th. Prior to March 26th, α = 1/6,
l = 0.76. Because the model is poorly constrained prior to day 61, the real purpose
of this part of the model is to generate sufficiently large classes of E and I relative
to J on March 26th to give the fast increase in C from day 61 to day 67. After
March 26th, three scenarios are shown. The fit to the data is given by α = 1/3,
l = 0.05 (rapid diagnosis and effective isolation of diagnosed cases, dashed line).
The second curve is given by α = 1/6, l = 0.05 (slow diagnosis and effective
isolation, dotted line) and the third curve by α = 1/3, l = 0.3 (rapid diagnosis
with improved but imperfect isolation, dash-dot line). An index case is assume
on February 1st. The transmission rate β is computed using the estimated rate of
growth (r = 0.0543) for the Ontario data as described in the text.
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Figure 1.4: Cumulative number of SARS cases in Hong Kong and Singapore as a
function of time (SEIJR model) with l = 0.38 (Hong Kong) and l = 0.40 (Singa-
pore). Singapore has β = 0.68, all other parameter are from Table 1. The data
are fitted starting March 31 (see Figure 1.2) because of the jump in reporting on
March 30th.
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1.4 Conclusions

A simple model that can capture the effect of average infectiousness in a heteroge-

neous population and the effect of isolating diagnosed patients has been introduced

to explore the role of patient isolation and diagnostic rate in controlling a SARS

outbreak. By examining two cases with relatively clean exponential growth curves

for the number of recognized cases, we are able to calibrate a SEIJR model with

parameters α = 1/3 (SARS’ diagnostic rate) and l ≈ 0.4 (isolation effectiveness).

We then use our SEIJR model to examine the non-exponential dynamics of the

Toronto outbreak. Two features of the Toronto data, the steep increase in the

number of recognized cases after March 31st and rapid slowing in the growth of

new recognized cases, robustly constrained the SEIJR model by requiring that

l ≈ 0.05 and α > 1/3 days−1.

The model is also used to look at the impact of drastic control measures (iso-

lation). The fitting of data shows that the initial rates of SARS’ growth are quite

similar in most regions leading to estimates of R0 between 1.1 and 1.2 despite the

recent identification of superspreaders. Model simulations are fitted to SARS re-

ported data for the province of Ontario, Hong Kong and Singapore. Good fits are

obtained for reasonable values of α, the rate of identification of SARS infections;

“reasonable” values of the control parameters l (a measure of isolation); possible

values of p, a crude measure of reduced susceptibility (due to genetic factors, age

or reduced contact rates); q a crude measure of the relative degree of infectious-

ness of asymptomatic individuals; possible values of ρ a measure of initial levels

of population heterogeneity; and, reasonable values of N the effective population

size. It is worth noticing that for values of N larger than 100, 000 the predictions

(proportion of cases at the end of the outbreak, etc.) are roughly the same. The
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introduction of behavioral changes that follow the identification of the first case

(reduce values of l at the time of the identification and moving aggressively to

identify cases of SARS by increasing 1/α) result in a dramatic reduction in the

total number of cases and on mortality in Toronto. Given the fact that SARS ap-

pears to kill between three and seven percent of infected (diagnosed) cases ([28]), it

seems quite appropriate to isolate diagnosed people. Although we do not examine

the effect of quarantine by varying q, it seems intuitive that quarantining those

who came into close contact with positively diagnosed individuals will reduce the

total number of cases.

Model results and simple estimates suggest that local outbreaks may follow similar

patterns. Furthermore, the use of relative extreme isolation measures in con-

junction with rapid diagnosis has strong impact on the local dynamics (Toronto’s

situation). However, if SARS has shown us anything it is that “undetected” and

“unchecked” local disease dynamics can rapidly become a global issue.

The research on this article used the latest data available (April 18 for Canada

and April 21 for Hong Kong and Singapore). Recent disclosures [43] reaffirm the

importance of carrying out the analysis excluding data from China. We have re-

done the analysis including the data collected up to April 25 and, our conclusions,

remain the same. Current data seem to support higher values for SARS induced

mortality rates [28]. However, our model is most sensitive to the parameters l (ef-

fectiveness of isolation) and (α) diagnostic rate. It is not as sensitive to changes in

δ. In fact, the consideration of a 7% mortality (δ ≈ 0.01) rather than 4% reduces

the number of cases by about 12%. In Toronto, we have estimated 612 diagnosed

cases with (l = 0.05 and α = 1/3 after March 26th). Perfect isolation after March

26th, (l = 0.00) reduces this number to 396 diagnosed cases. The assumption of
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homogenous mixing implies that our model is likely to overestimate the size of the

outbreak. Hence, the situation in Toronto seems to support the view that this

outbreak is being contained. Obviously, the case of the crude model (by design)

cannot handle high levels of variability (an stochastic model would be desirable).

This possibility is tested (as it is often done in deterministic models) by looking at

the sensitivity of the model to parameters (α and l being the most critical). Such

sensitivity analyses can also help “estimate” the variability in R0.
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1.5 Appendix

Following the second generator approach [35], we obtain the next generation ma-

trix FV −1 where

J =


βq(ρ+ p(1 − ρ)) β(ρ+ p(1 − ρ)) βl(ρ + p(1 − ρ))

0 0 0

0 0 0


and

J =


k 0 0

−k α + γ1 + δ 0

0 −α γ2 + δ


F represents the paths to infection (derivatives of the infection terms) and V rep-

resents the remaining dynamics (derivatives of all other terms). The three columns

and rows correspond to the compartments E, I and J .

The basic reproductive number is the dominant eigenvalue of FV −1

R0 = {β [ρ+ p(1 − ρ)]}
{

q
k + 1

α+γ1+δ + αl
(α+γ1+δ)(γ2+δ)

}
(1.3)

β is the common scale for the rate of infection. ρ is the fraction of compartment

S1 susceptibles in the population and (1 − ρ) is the fraction of compartment S2

susceptibles. The infection rates for the latter are attenuated by p. Infectives stay
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in compartment E for 1
k days on average, where their infection rate is qβ, they then

all progress to compartment I for 1
α+γ1+δ days (on average) where their infection

rate is β. A fraction α
α+γ1+δ infectives progress from compartment I to J where

their infection rate is lβ. Infectives spend, on average, 1
γ2+δ days in compartment

J .



Chapter 2

Implications of an Uncertainty and

Sensitivity Analysis for SARS’ Basic

Reproductive Number for General

Public Health Measures *

2.1 Introduction

Severe Acute Respiratory Syndrome (SARS), a viral respiratory disease, has been

reported in 32 countries (July 11, 2003). SARS is believed to have originated

in Guangdong Province, China during November 2002 [44]. Researchers at the

Erasmus Medical Center in Rotterdam identified a corona virus as the agent re-

sponsible for the infection of 8437 individuals worldwide (813 deaths, July 11,

2003) [4]. According to recent epidemiological data from Hong Kong [1], an in-

dividual exposed to SARS enters an incubation period with a mean length of 6.4

days. Symptomatic individuals in that study were diagnosed (hospitalized) at a

mean rate 1/4.85 days−1. Those who recovered were discharged a mean of 23.5

days after diagnosis, while the mean period to death was 35.9 days after diagnosis.

Because no specific treatment for SARS exists, control of the epidemic has relied

on rapid diagnosis and isolation of patients [44], an approach that is reported to be

effective [45]. However, the majority of the early SARS cases in Toronto occurred

∗G. Chowell , C. Castillo-Chavez, P.W. Fenimore, C. Kribs-Zaleta, L. Arriola,
J.M. Hyman. Implications of an Uncertainty and Sensitivity analysis for SARS’s
Basic Reproductive Number for General Public Health Measures, Emerging Infec-
tious Diseases 10 (7) (2004).
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in hospitals, with the movement of SARS patients between hospitals contributing

significantly to its initial spread [46]. In Taiwan 94% percent of SARS cases oc-

curred due to transmission in hospital wards [47] (similar effects occurred in Hong

Kong and Singapore [48]). Although the SARS epidemic was eventually controlled,

the measures used to achieve that control varied greatly in scope from one place

to another. Control of an outbreak relies partly on identifying what disease pa-

rameters are likely to lead to a significant reduction in R0. Here we calculate the

dependence of R0 on model parameters.

2.2 Methods

The basic reproductive number R0 is the average number of secondary cases gen-

erated by a primary case during its infectious period. If R0 < 1 the disease can

not be sustained. On the other hand, if R0 > 1 an epidemic outbreak typically

occurs. Two models of the SARS epidemic that incorporate the effects of quar-

antine and early detection of new cases that report a basic reproductive number

between 2 and 4 but assume perfect isolation were recently introduced [49, 50]. A

slightly different model (Chowell et al. [51]) was used to quantify the role that fast

diagnosis and efficient isolation of patients played in Toronto’s outbreak [51]. The

estimates of R0 from this general model were significantly lower than those found

in other work. This model predicted control in Toronto and showed that lack of

immediate action would have been catastrophic [52]. Differences in the susceptibil-

ity of the population [1] are incorporated in the model by dividing the population

into classes S1 (high risk) and S2 (low risk). The low risk class (S2) has a reduced

susceptibility to SARS, measured by the parameter p. While p = 0 would denote

that S2 has no susceptibility to SARS, p = 1 would indicate that both susceptible
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classes are equally susceptible to SARS. Initially, S1 = ρN and S2 = (1 − ρ)N

where N is the total population size and ρ is the initial fraction of individuals

in the most susceptible class S1. Susceptibles exposed to SARS (assumed to be

asymptomatic) enter the exposed class with a rate proportional to β and remain

there for a mean incubation period of 1/k. The possibility of reduced transmission

from the exposed class is included through the parameter q (0 < q < 1), a relative

measure of infectiousness. Once symptomatic, exposed individuals progress to the

infectious class (not yet diagnosed) where they may recover at the rate γ1, die

at rate δ, or enter the diagnosed class at the rate α. Isolation mechanisms may

be put in place in the diagnosed class to reduce their impact on the transmission

process. The relative infectiousness after isolation is measured by the parameter l

(0 < l < 1) so that l = 0 denotes perfect isolation while l = 1 denotes ineffective

isolation.

The basic reproductive number derived from our model [51] is given by the formula:

R0 = {β [ρ + p(1 − ρ)]}
{

q
k + 1

α+γ1+δ + αl
(α+γ1+δ)(γ2+δ)

}
. (2.1)

This equation includes 10 parameters of which two, the diagnostic rate (α) and

the isolation effectiveness (l) are amenable to modification by medical intervention.

Definitions for the remaining parameters are in Table 3.1. We use a Monte Carlo

procedure (simple random sampling) to quantify the uncertainty of the basic re-

productive number R0 and the sensitivity of R0 to model parameters when these

parameters are distributed. Similar methodology has been used before [53, 54, 55].

The probability distributions for k, γ2, δ, α (Figure 2.1) are taken from [1]. Be-

cause it is still not known whether asymptomatic individuals (exposed class) can

transmit the disease, we have fixed q = 0.1 (the relative infectiousness of exposed

and asymptomatic individuals) as in ref. [51]. The observed heterogeneity in trans-
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mission rates during the SARS epidemic is modelled here by assuming that β is

distributed exponentially with mean 0.25 person−1day−1 (our estimate of the trans-

mission rate in Hong Kong). We revise earlier estimates for ρ and p [51] (both have

an impact on R0) using data from the age distribution of residents and the age-

specific incidence of SARS in Hong Kong as reported in [1]. The revised estimates

are ρ = 0.77 (the initial proportion of the population at higher risk) and p = 1/3

(the measure of reduced susceptibility in S2). The lower risk subpopulation lies in

the age range (0− 19). It constitutes approximately 23% of Hong Kong’s popula-

tion [1]. The fact that most of the SARS cases used in the epidemiological studies

of Toronto [46] were generated in hospitals limits the use of general demographic

data from Toronto in the estimation of ρ and p. Hence, we use the parameters

estimated from the situation in Hong Kong. In addition, we have generated new

estimates for the transmission rate β (β = 0.25 for Hong Kong) and the isola-

tion effectiveness (l) in Hong Kong (l = 0.43), Singapore (l = 0.49) and Toronto

(l = 0.1, after control measures were put in place) by least squares fitting of our

model [51] to epidemic curve data [4, 5] using the revised values of p = 1/3 and

ρ = 0.77.
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Figure 2.1: Histograms of the 6 distributed parameters appearing in eqn. 1 with
sample size 104. The transmission rate was assumed exponentially distributed with
mean 0.25, our estimate transmission rate in Hong Kong. Here l is assumed to
have a Beta distribution (l ∼ B(1, 2)). Alternative distributions for l were also
used as described in the text. All other distributions were taken from ref. [1].

2.3 Results

2.3.1 Uncertainty analysis

Monte Carlo simulations with 105 samples from the distributions of various epi-

demic parameters (Figure 2.1) and fixed values of l = 0.1 and α = 1/3 day−1 for

Toronto (i.e. after the implementation of control measures on March 26th) give

a median and interquartile range for the distribution of the basic reproductive

number R0 = 0.58 (0.24, 1.18) (Table 2.2). The same Monte Carlo procedure but

with lower rate of diagnosis α = 1/4.85 day−1 and the levels of patient isolation

in Hong Kong (l = 0.43) and Singapore (l = 0.49) gives R0 = 1.10(0.44 − 2.29)

and 1.17 (0.47 − 2.47) respectively (see Figure 2.2). These values for R0 are in

agreement with the empirical R0 observed from the data of the first week of the

SARS outbreak in Singapore [49]. Perfect isolation gives R0 = 0.49 (0.19 − 1.08).
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Table 2.1: Parameters definitions and baseline values for our model. Baseline
values for k, γ2, α, ρ, p and δ have been taken from ref. [1]. β = 0.25 is our
estimate transmission rate in Hong Kong. l = 0 means perfect isolation while
l = 1 means no isolation.

Parameter Definition Baseline value

p Reduction in risk of infection for class S2 0.33

ρ Initial proportion of the population at higher risk 0.77

β Transmission rate per day 0.25

1/k Mean incubation period (days) 6.37

1/γ1 Mean period before recovery (days) 28.35

1/γ2 Mean period before recovery for class J (days) 23.5

1/α Mean period before diagnosis (days) 4.85

δ SARS’ induced mortality rate per day 0.0279

q Relative measure of infectiousness for class E 0.1

l Relative measure of reduced risk for class J [0, 1]

Especially noteworthy is that even in cases when eventual control of an outbreak is

achieved (Toronto and a hypothetical case of perfect isolation), 25% of the weight

of the distribution of R0 lies at R0 > 1. Furthermore, the median and interquartile

range of R0 are larger when p = 1, as it has been assumed ([49]). In Figure 2.3

we show the (β, l) parameter space when R0 < 1 obtained from our uncertainty

analysis [55].

2.3.2 Sensitivity analysis

We rank model parameters according to the size of their effect on R0. Partial rank

correlation coefficients (PRCCs) [53, 54, 56] were computed between each of the

parameters (with the exception of p, q, and ρ which where held fixed) and R0 as
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Figure 2.2: Empirical (dots) and stretched exponential estimated probability den-
sity function Prob(R0) = ae−(R0/b)c

(solid line) [6] of R0 for the cases of Toronto
(a = 0.186, b = 0.803, c = 0.957, after control measures had taken place), Hong
Kong (a = 0.281, b = 1.312, c = 0.858) and Singapore(a = 0.213, b = 1.466,
c = 0.883) obtained from our uncertainty analysis. The distribution for the case
of perfect isolation (l = 0, a = 0.369, b = 0.473, c = 0.756) is shown as a reference.

samples were drawn from the distributions, thus quantifying the strength of the

parameter’s linear association with R0. The larger the partial rank correlation

coefficient, the larger the influence of the input parameter on the magnitude of

R0. Because the distribution of the parameter l (isolation effectiveness) is not

known, we studied the sensitivity of R0 to various distributions of l. The system-

atic decline in R0 with increasing l in the range [0, 1] is illustrated in Figure 2.4.

Distributions of l used for the Monte Carlo calculation of the partial rank corre-

lation coefficients are: (a) l ∼ B(a = 2, b = 2) where B is used to denote a beta

distribution. Here, the likelihood of l is bell-shaped with mean 0.5 and variance

0.05; (b) l ∼ B(a = 1, b = 2), the likelihood of l decreases linearly in the [0,1]

interval; and (c) l ∼ B(a = 2, b = 1), the likelihood of l increases linearly in the

[0,1] interval.
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Figure 2.3: (β, l) parameter space when R0 < 1 obtained from the uncertainty
analysis (black dots). The deterministic (β, l) level curve when R0 = 1 is shown
in yellow. All other parameters in eqn. 1 were fixed to their baseline values (Table
3.1). l = 0 denotes perfect isolation while l = 1 denotes no isolation.

The transmission rate β and isolation effectiveness (l) are the most influential

parameters in determining R0. Table 2.3 shows the partial rank correlation coef-

ficients for three possible distributions of l. The transmission rate is ranked first

independent of the distribution of l. Isolation effectiveness is ranked second when l

comes from distributions (a) and (b) and ranked third when it comes from distribu-

tion (c). Our sensitivity analysis is corroborated by computing local derivatives on

R0 (see appendix). Achieving control (R0 < 1) can require changing parameters

other than those with the highest partial rank correlation coefficient. For example

ref. [51] showed that control of the outbreak in Toronto relied on both a reduction

in l and 1/α, even though α is ranked fairly low by the partial rank correlation

coefficient.
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Table 2.2: The median and the interquartile range (IQR) of the distribution of the
basic reproductive number (R0) of SARS for Toronto, Hong Kong and Singapore
obtained from our uncertainty analysis.

Country R0 mean R0 median R0 IQR

Toronto, Canada (l = 0.10) 0.86 0.58 (0.24-1.18)

Hong Kong (l = 0.43) 1.70 1.10 (0.44-2.29)

Singapore (l = 0.49) 1.83 1.17 (0.47-2.47)

Table 2.3: Partial rank correlation coefficients (PRCCs) between each of the input
parameters and R0 from Monte Carlo sampling of size 104 for different distributions
of the isolation effectiveness (l) as described in the text.

Probability distrib. Parameters sorted by decreasing PRCC

Beta(a = 2,b = 2) β (0.92), l (0.57), δ (0.53), γ2 (0.35), α (0.32), k (0.13)

Beta(a = 1,b = 2) β (0.90), l (0.60), δ (0.44), α (0.39), γ2 (0.26), k (0.12)

Beta(a = 2,b = 1) β (0.92), δ (0.60), l (0.51), γ2 (0.40), α (0.22), k (0.11)

2.4 Conclusion

We have estimated the basic reproductive number (R0) for the cases of Toronto,

Hong Kong and Singapore (Table 2.2) via an uncertainty analysis carried on Equa-

tion 2.2. Input parameters to R0 have been taken or derived from [1, 51] (Figure

2.1). A stretched exponential distribution fits well the resulting distributions of

R0 for the different locations (Figure 2.2). Even though the median of R0 is less

than one under the assumption of perfect patient isolation (l = 0), we find that

25% of our R0 distribution lies at R0 > 1, even when control is achieved.

Our expression for R0 incorporates the effects of diagnosis-isolation strategies.

Moreover, our approach includes differential susceptibility (p) and/or effective pop-

ulation size (ρ). Most models take p = 1 even though data from Hong Kong shows
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Figure 2.4: Boxplot of the sensitivity of R0 estimates to varying values of l, isola-
tion effectiveness. l (0 ≤ l ≤ 1) was divided in 20 equally spaced intervals going
from perfect isolation (l = 0, level 1) to no isolation (l = 1, level 21). The boxplot
shows the median and the interquartile range of R0 obtained from Monte Carlo
sampling of size 105.

that a low risk subpopulation lies in the age range (0− 19), approximately 23% of

Hong Kong’s population [1]. The assumption p = 1 thus overestimates R0.

Our sensitivity analysis shows that the transmission rate (β) and the isolation

effectiveness in hospitals (l) have the largest effect on R0. The absence of clear

policies that would modify β directly means that a significant effort must be (and

has been) made, by the medical community, to modify alternative parameters,

such as the diagnostic rate. Hence, the strong sensitivity of R0 to the transmission

rate β indicates that efforts in finding intervention strategies that manage to lower

the contact rate of individuals promise an effective means for lowering R0. Such

strategies include, but are not limited to, the use of face masks (the probability

of transmission per contact is reduced), hand washing, and avoiding large crowd

gatherings (large public events).
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Associated with the role of screening, diagnosis, and the effective isolation of pa-

tients is the issue of cost. The value of stringent quarantine measures and the like-

lihood of compliance combined with the economic impact of lost wages (thousands

were quarantined in Taiwan, Hong Kong and Singapore [57]); the costs associated

with screening at airports and hospitals; the cost associated with the closure of

hospitals; and, the costs associated with the isolation of SARS cases and exposed

individuals cannot be ignored or minimized (see appendix for a brief discussion).
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2.5 Appendix

Our Monte Carlo sampling of the parameter space provides globally averaged mea-

sure of the sensitivity of R0 to model parameters. Another approach consists in

computing sensitivity indices of the model parameters through local derivatives

[58]. This approach only provides a local measure as the sensitivity indices can

change when the parameter values change. Here we use local sensitivity analysis

to corroborate our global sensitivity analysis and discuss how this approach can be

applied in the analysis of resource allocation.

Let λ represent any of the ten nonnegative parameters β, ρ, p, q, k, γ1, γ2, δ, α

and l that define the basic reproductive number of our model [51]

R0 = {β [ρ + p(1 − ρ)]}
{

q
k + 1

α+γ1+δ + αl
(α+γ1+δ)(γ2+δ)

}
. (2.2)

If a “small” perturbation δλ is made to the parameter λ, a corresponding change

will occur in R0 as δR0, where

δR0 = R0(λ+ δλ) −R0(λ)

≈ δλ
∂R0

∂λ
.

The normalized sensitivity index Ψλ is the ratio of the corresponding normalized

changes and is defined as

Ψλ :=
δR0

R0

/
δλ

λ
=

λ

R0

∂R0

∂λ
. (2.3)

An approximation of the perturbed value of R0, in terms of the sensitivity index

is

R0(λ+ δλ) ≈
(

1 +
δλ

λ
Ψλ

)
R0(λ),
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where the ten normalized sensitivity indices are

Ψβ = 1

Ψρ =
ρ(1 − p)

η

Ψp =
p(1 − ρ)

η

Ψq =
qβη

kR0
= −Ψk

Ψα = − αβη

R0 (α + γ1 + δ)

(R0

βη
− q

k
− l

δ + γ2

)
Ψγ1 = − γ1βη

R0 (α + γ1 + δ)

(R0

βη
− q

k

)
Ψγ2 = − αβη

R0 (α + γ1 + δ)

lγ2

(δ + γ2)
2

Ψδ = − δβη

R0 (α + γ1 + δ)

(R0

βη
− q

k
+

αl

(δ + γ2)2

)
Ψl =

βη

R0 (α + γ1 + δ)

αl

(δ + γ2)
,

with η := p(1 − ρ) + ρ and γ2 := αγ1/(α − γ1). For the values of the parameters

used in this model, the sensitivity indices Ψβ , Ψρ, Ψp, Ψq and Ψl are positive,

Ψk = −Ψq and the remaining indices are negative. Furthermore, since all of the

indices (except Ψβ) are functions of the parameters, the sensitivity indices will

change as the parameter values change.

For our specific case where β = .25, q = .1, p = 1/3, k = .15707, α = .2061,

γ1 = .035285, γ2 = .0426, δ = .0279 and ρ = .77, and Toronto (l = .1) or Hong

Kong (l = .43) the normalized sensitivity indices are computed. The sensitivity

indices and the associated % changes needed to affect a 1% decrease in R0 are

given in Tables 2.5 and 2.5. Since the effective rate of patient isolation and the

average rate of diagnosis provide feasible intervention strategies, we examine how

changes to the parameters l and α affect the basic reproductive number (R0).
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Let us first consider the outbreak in Hong Kong. The value α = .2061 means

that the mean time to diagnose an infected individual is approximately 4.85 days.

The sensitivity index Ψα = −.1933 means that a 5.2% increase in α, which in

turn requires a decrease of 5.7 hours of mean time to diagnosis, would result in a

decrease of approximately 1% in R0. Similarly, the sensitivity index Ψl = .5183

suggests that a 1.9% decrease in the value of l, that is, when l goes from 0.43 to

0.42 (isolation effectiveness∗) results in a 1% decrease in R0. In other words, a

5.2% increase in α or a 1.9% decrease in l result in approximately a 1% decrease in

R0. For the particular values of the parameters chosen for Hong Kong, the most

effective way to reduce R0 is to decrease the transmission rate β and the parameter

l (improve the effective isolation rate). In the case of Toronto, Ψα = −.4758

which means that a 2.1% increase in α, results in a 1% decrease in R0. Whereas

Ψl = .2001 means that a 5% decrease in l results in a 1% decrease in R0.

As can be seen from these two examples, the importance or ranking of the sensi-

tivity indices can change as the values of the parameters change. Specifically, the

sensitivity indices Ψl and Ψα satisfy the relationship

‖Ψl‖ < ‖Ψα‖ ⇐⇒ l <
δ + γ2

α + 2γ1 + 2δ
. (2.4)

For the particular values of the parameters given above, Figure (2.5) shows the

level curve for the pair (l,α), where l (α + 2γ1 + 2δ) = δ + γ2. The particular

parameter values are either for Toronto (l,α) = (.1, .2064) or for Hong Kong

(l,α) = (.43, .2064). Choosing the parameter values (l,α) below the level curve

means that ‖Ψl‖ < ‖Ψα‖ and the converse is true if (l,α) is chosen above the

curve. Along the level curve, the magnitude of the sensitivities are equal. Notice

∗Recall that l = 0 corresponds to complete isolation, whereas l = 1 means no
effective isolation occurs. Hence, a decrease in l means an increase in the effective
isolation of the infected individuals.
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that the level curve divides the parameter space into two regions, each of area

Abelow and Aabove, respectively. Since Aabove , Abelow, Ψl will be the dominant

sensitivity index for randomly chosen (l,α).

The implementation of an efficient intervention policy must consider the fact that

there are limited resources. If one assumes, for example, that the strategies of

isolation and diagnosis have associated 1% incremental costs in implementation of

δCI and δCD, respectively, then a mixed strategy could be formulated that max-

imizes the effectiveness of a combined intervention. Specifically, if x denotes the

magnitude of % decrease in l and y denotes the magnitude of % increase in α and,

it is assumed that there is a maximum amount of total additional resources avail-

able (δCT), then the total additional cost of a new mixed isolation and diagnosis

intervention policy must satisfy the inequality δCIx + δCDy ≤ δCT. Since the ob-

jective is to maximize the decrease in the reproductive number R0, this means we

want to maximize the objective function P := ‖Ψl‖x + ‖Ψα‖y under appropriate

constraints. In a more general setting, additional nonlinear constraints could be

involved, in which case one would need to solve a nonlinear optimization problem.

The situation where the cost of diagnosis of infected individuals may be much

greater than the cost of isolation or viceversa is certainly of interest.
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Table 2.4: Sensitivity Indices for Toronto with l = 0.1

Positive Sensitivity Indices Negative Sensitivity Indices

Ψβ = 1 −1% Ψα = −.4758 2.10%

Ψρ = .6063 −1.65% Ψδ = −.1707 5.86%

Ψl = .2001 −4.99% Ψγ2 = −.1208 8.28%

Ψq = .1172 −8.53% Ψk = −.1172 8.53%

Ψp = .0906 −11.04% Ψγ1 = −.1156 8.65%

Table 2.5: Sensitivity Indices for Hong Kong with l = .43

Positive Sensitivity Indices Negative Sensitivity Indices

Ψβ = 1 −1% Ψγ2 = −.3129 3.19%

Ψρ = .6063 −1.65% Ψδ = −.3016 3.32%

Ψl = .5183 −1.93% Ψα = −.1933 5.17%

Ψp = .0906 −11.04% Ψγ1 = −.1216 8.22%

Ψq = .0706 −14.16% Ψk = −.0706 14.16%
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Figure 2.5: Level curve of (l,α) where l (α + 2γ1 + 2δ) = δ + γ2.



Chapter 3

The Basic Reproductive Number of

Ebola and the Effects of Public Health

Measures: The Cases of Congo and

Uganda *

3.1 Introduction

Ebola hemorrhagic fever is a highly infectious and lethal disease named after a

river in the Democratic Republic of the Congo (formerly Zaire) where it was first

identified in 1976 [59]. Twelve outbreaks of Ebola have been reported in Congo,

Sudan, Gabon, and Uganda as of September 14, 2003 [60, 61]. Two different

strains of the Ebola virus (Ebola-Zaire and the Ebola-Sudan) have been reported

in those regions. Despite extensive search, the reservoir of the Ebola virus has not

yet been identified [62, 63]. Ebola is transmitted by physical contact with body

fluids, secretions, tissues or semen from infected persons [59, 64]. Nosocomial

transmission has been typical as patients are often treated by unprepared hospital

personnel (barrier nursing techniques need to be observed). Individuals exposed

to the virus who become infectious do so after a mean incubation period of 6.3

days (1 − 21 days) [2]. Ebola is characterized by initial flu-like symptoms which

rapidly progress to vomiting, diarrhea, rash, and internal and external bleeding.

∗G. Chowell , N. W. Hengartner, C. Castillo-Chavez, P. W. Fenimore, and J.
M. Hyman. The Reproductive Number of Ebola and the Effects of Public Health
Measures: The cases of Congo and Uganda, forthcoming in Journal of Theoretical
Biology.
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Infected individuals receive limited care as no specific treatment or vaccine exists.

Most infected persons die within 10 days of their initial infection [65] (50%− 90%

mortality [64]).

Using a simple SEIR (susceptible-exposed-infectious-removed) epidemic model (Fig-

ure 5.3) and data from two well-documented Ebola outbreaks (Congo 1995 and

Uganda 2000), we estimate the number of secondary cases generated by an index

case in the absence of control interventions (R0). Our estimates of R0 are 1.83

(SD 0.06) for Congo (1995) and 1.34 (SD 0.03) for Uganda (2000). We model the

course of the outbreaks via an SEIR epidemic model that includes a smooth tran-

sition in the transmission rate after control interventions are put in place. We also

perform an uncertainty analysis on the basic reproductive number R0 to account

for its sensitivity to disease-related parameters and analyze the model sensitivity

of the final epidemic size to the time at which interventions begin. We provide a

distribution for the final epidemic size. A two-week delay in implementing public

health measures results in an approximated doubling of the final epidemic size.

3.2 Methods

We fit data from Ebola hemorrhagic fever outbreaks in Congo (1995) and Uganda

(2000) to a simple deterministic (continuous time) SEIR epidemic model (Figure

5.3). The least-squares fit of the model provides estimates for the epidemic pa-

rameters. The fitted model can then be used to estimate the basic reproductive

number R0 and quantify the impact of intervention measures on the transmis-

sion rate of the disease. Interpreting the fitted model as an expected value of a

Markov process, we use multiple stochastic realizations of the epidemic to estimate
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a distribution for the final epidemic size. We also study the sensitivity of the final

epidemic size to the timing of interventions and perform an uncertainty analysis on

R0 to account for the high variability in disease-related parameters in our model.

3.2.1 Epidemic Models

Individuals are assumed to be in one of the following epidemiological states (Figure

5.3): susceptibles (at risk of contracting the disease), exposed (infected but not

yet infectious), infectives (capable of transmitting the disease), and removed (those

who recover or die from the disease).

Differential Equation Model

Susceptible individuals in class S in contact with the virus enter the exposed class

E at the per-capita rate βI/N , where β is transmission rate per person per day,

N is the total effective population size, and I/N is the probability that a contact

is made with a infectious individual (i.e. uniform mixing is assumed). Exposed

individuals undergo an average incubation period (assumed asymptomatic and

uninfectious) of 1/k days before progressing to the infectious class I. Infectious

individuals move to the R-class (death or recovered) at the per-capita rate γ (see

Figure 5.3). The above transmission process is modeled by the following system

of nonlinear ordinary differential equations [66, 34]:
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Ṡ(t) = −βS(t)I(t)/N

Ė(t) = βS(t)I(t)/N − kE(t)

İ(t) = kE(t) − γI(t)

Ṙ(t) = γI(t)

Ċ(t) = kE(t),

(3.1)

where S(t), E(t), I(t), and R(t) denote the number of susceptible, exposed, infec-

tious, and removed individuals at time t (the dot denotes time derivatives). C(t)

is not an epidemiological state but serves to keep track of the cumulative number

of Ebola cases from the time of onset of symptoms.

Figure 3.1: A schematic representation of the flow of individuals between epidemio-
logical classes. β I

N is the transmission rate to susceptibles S from I; E is the class
of infected (not yet infectious) individuals; k is the rate at which E-individuals
move to the symptomatic and infectious class I; Infectious individuals (I) either
die or recover at rate γ. C is not an epidemiological state but keeps track of the
cumulative number of cases after the time of onset of symptoms.

Markov Chain Model

The analogous stochastic model (continuous time Markov chain) is constructed by

considering three events: exposure, infection and removal. The transition rates are

defined as:
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Event Effect Transition rate

Exposure (S, E, I, R) → (S-1, E+1, I, R) β(t)SI/N

Infection (S, E, I, R) → (S, E-1, I+1, R) kE

Removal (S, E, I, R) → (S, E, I-1, R+1) γI

The event times 0 < T1 < T2 < ... at which an individual moves from one state

to another are modeled as a renewal process with increments distributed exponen-

tially,

P (Tk − Tk−1 > t|Tj, j ≤ k − 1) = e−tµ(Tk−1)

where µ(Tk−1) = (β(Tk−1)S(Tk−1)I(Tk−1)/N + kE(Tk−1) + γI(Tk−1))−1.

The final epidemic size is Z = C(T ) where T = min{t > 0, E(t) + I(t) = 0}, and

its empirical distribution can be computed via Monte Carlo simulations [67].

3.2.2 The Transmission Rate and the Impact of Interven-

tions

The intervention strategies to control the spread of Ebola include surveillance,

placement of suspected cases in quarantine for three weeks (the maximum esti-

mated length of the incubation period), education of hospital personnel and com-

munity members on the use of strict barrier nursing techniques (i.e protective

clothing and equipment, patient management), and the rapid burial or cremation

of patients who die from the disease [64]. Their net effect, in our model, is to
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reduce the transmission rate β from β0 to β1 < β0. In practice, the impact of the

intervention is not instantaneous. Between the time of the onset of the interven-

tion to the time of full compliance, the transmission rate is assumed to decrease

gradually from β0 to β1 according to

β(t) =

 β0 t < τ

β1 + (β0 − β1)e−q(t−τ) t ≥ τ

where τ is the time at which interventions start and q controls the rate of the

transition from β0 to β1. One key question is whether the speed at which control

measures are implemented might benefit from improvement. As we will see, this

seems unlikely. Another interpretation of the parameter q can be given in terms

of th = ln(2)
q , the time to achieve β(t) = β0+β1

2 .

3.2.3 Epidemiological data

The data for the Congo (1995) and Uganda (2000) Ebola hemorrhagic fever out-

breaks include the identification dates of the causative agent and data sources. The

reported data are (ti, yi), i = 1, ..., n where ti denotes the ith reporting time and

yi the cumulative number of infectious cases from the beginning of the outbreak

to time ti.

Congo 1995. This outbreak began in the Bandundu region, primarily in Kikwit,

located on the banks of the Kwilu River. The first case (January 6) involved a 42-

year old male charcoal worker and farmer who died on January 13. The Ebola virus

was not identified as the causative agent until May 9. At that time, an international

team implemented a control plan that involved active surveillance (identification



44

of cases) and education programs for infected people and their family members.

Family members were visited for up to three weeks (maximum incubation period)

after their last identified contact with a probable case. Nosocomial transmission

(transmission from patients within hospital settings) occurred in Kikwit General

Hospital. Transmission was halted through the institution of strict barrier nurs-

ing techniques that included the use of protective equipment and special isolation

wards. A total of 315 cases of Ebola were identified (81% case fatality). Daily

Ebola cases by date of symptom onset from March 1 through July 12 are available

(Figure 4.1) [7].

Uganda 2000. A total of 425 cases (53% case fatality) of Ebola were identified in

three districts of Uganda: Gulu, Masindi and Mbara. The onset of symptoms for

the first reported case was on August 30, but the cause was not identified as Ebola

until October 15 by the National Institute of Virology in Johannesburg (South

Africa). Active surveillance started during the third week of October. A plan that

included the voluntary hospitalization of probable cases was then put in place.

Suspected cases were closely followed for up to three weeks. Other control mea-

sures included community education (avoiding crowd gatherings during burials)

and the systematic implementation of protective measures by health care person-

nel and the use of special isolation wards in hospitals. Weekly Ebola cases by date

of symptom onset are available from the WHO (World Health Organization) [8]

(from August 20, 2000 through January 7, 2001) (Figure 4.1).
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Figure 3.2: On the left, we have the daily number of cases by date of symptom
onset during the Ebola outbreak in Congo 1995 (Mar 6-Jul 12). On the right,
we have the weekly number of cases by date of symptom onset during the Ebola
outbreak in Uganda 2000 (Aug 20-Jan 07). Data has been taken from refs. [7, 8].

3.2.4 Parameter Estimation

Empirical studies in Congo suggest that the incubation period is less than 21 days

with a mean of 6.3 days [2] and the infectious period is between 3.5 and 10.7 days.

The model parameters Θ = (β0, β1, k, q, γ) are fitted to the Congo (1995) and

Uganda (2000) Ebola outbreak data by least squares fit to the cumulative number

of cases C(t,Θ) in eqn. (4.3). We used a computer program (Berkeley Madonna,

Berkeley, CA) and appropriate initial conditions for the parameters (0 < β < 1,

0 < q < 100, 1 < 1/k < 21 [2], 3.5 < 1/γ < 10.7 [3]). The optimization pro-

cess was repeated 10 times (each time the program is fed with two different initial

conditions for each parameter) before the “best fit” was chosen. The asymptotic

variance-covariance AV (θ̂) of the least-squares estimate is
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AV (θ̂) = σ2(
n∑

i=1

∇C(ti,Θ0)∇C(ti,Θ0)
T )−1

which we estimate by

σ̂2(
n∑

i=1

∇̂C(ti, Θ̂)∇̂C(ti, Θ̂)T )−1

where n is the total number of observations, σ̂2 = 1
n−5

∑
(yi − C(ti, Θ̂))2 and ∇̂C

are numerical derivatives of C.

For small samples, the confidence intervals based on these variance estimates may

not have the nominal coverage probability. For example, for the case of Zaire 1995,

the 95% confidence interval for q based on asymptomatic normality is (−0.26, 2.22).

It should be obvious that this interval is not “sharp” as it covers negative values

whereas we know q ≥ 0. The likelihood ratio provides an attractive alternative to

build confidence sets (Figure 3.3). Formally, these sets are of the form

{
Θ :

∑
(yi − C(ti,Θ))2∑
(yi − C(ti, Θ̂))2

≤ Aα

}

where Aα is the 1 − α quantile of an F distribution with appropriate degrees of

freedom. Parameter estimates are given in Table 3.1.

3.2.5 The Reproductive Number

The basic reproductive number R0 measures the average number of secondary cases

generated by a primary case in a pool of mostly susceptible individuals [66, 34] and
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Table 3.1: Parameter definitions and baseline estimates (time is given in days)
obtained from the best fit of the model equations (4.3) to the epidemic-curve
data of the Congo 1995 and Uganda 2000 outbreaks (Figure 3.5). The parameters
were optimized by a computer program (Berkeley Madonna, Berkeley, CA) using a
least squares fitting technique and appropriate initial conditions for the parameters
(0 < β < 1, 0 < q < 100, 1 < 1/k < 21 [2], 3.5 < 1/γ < 10.7 [3]). The optimization
process was repeated 10 times (each time the program is fed with two different
initial conditions for each parameter) before the “best fit” was chosen.

Congo 1995 Uganda 2000

Param. Definition Estim. S. D. Estim. S. D.

β0 Pre-interven. transm. rate 0.33 0.06 0.38 0.24

β1 Post-interven. transm. rate 0.09 0.01 0.19 0.13

th Time to achieve β0+β1

2 0.71 (0.02, 1.39)† 0.11 (0, 0.87)†

1/k Mean incubation period 5.30 0.23 3.35 0.49

1/γ Mean infectious period 5.61 0.19 3.50 0.67

is an estimate of the epidemic growth at the start of an outbreak if everyone is sus-

ceptible. That is, a primary case generates R0 = β0

γ new cases on the average where

β0 is the pre-interventions transmission rate and 1/γ is the mean infectious period.

The effective reproductive number at time t, Reff (t) = β(t)
γ x(t), measures the

average number of secondary cases per infectious case t time units after the intro-

duction of the initial infections and x(t) = S(t)
N ≈ 1 as the population size is much

larger than the resulting size of the outbreak (Table 3.2). Hence, Reff (0) = R0.

In a closed population, the effective reproductive number Reff (t) is non-increasing

as the size of the susceptible population decreases. The case Reff(t) ≤ 1 is of

special interest as it highlights the crossing of the threshold to eventual control

of the outbreak. An intervention is judged successful if it reduces the effective

reproductive number to a value less than one. In our model, the post-intevention
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reproductive number Rp = β1

γ where β1 denotes the post-intervention transmission

rate. In general, the smaller β1, the faster an outbreak is extinguished. By the

delta method [68], the variance of the estimated basic reproductive number R̂0 is

approximately

V (R̂0) ≈ R̂0
2 {V (β̂0)

β̂0
2 +

V (γ̂)

γ̂2
− 2Cov(β̂0, γ̂)

β̂0γ̂
}.
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Figure 3.3: 95% confidence intervals for th (th = log(2)
q ), the time to achieve a

transmission rate of β0+β1

2 , obtained from the likelihood ratio as described in the
text.

3.2.6 The Effective Population Size

A rough estimate of the population size in the Bandundu region of Congo (where

the epidemic developed) in 1995 is computed from the population size of the Ban-

dundu region in 1984 [69] and annual population growth rates [70] (Table 3.2). For

the case of Uganda (2000), we adjusted the population sizes of the districts of Gulu,
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Masindi and Mbara in 1991 and annual population growth rates [71] (Table 3.2).

These estimates are an upper bound of the effective population size (those at risk

of becoming infected) for each region. Estimates of the effective population size are

essential when the incidence is modeled with the pseudo mass-action assumption

(β(t)SI) which implies that transmission grows linearly with the population size

and hence the basic reproductive number R0(N) = β0N/γ. In our model, we use

the true mass-action assumption (β(t)SI/N) which makes the model parameters

(homogeneous system of order 1) independent of N and hence the basic reproduc-

tive number can be estimated by R0 = β0/γ [72]. In fact, comparisons between the

pseudo mass-action and the true mass-action assumptions with experimental data

have concluded in favor of the later [73]. The model assumption that N is constant

is not critical as the outbreaks resulted in a small number of cases compared to

the size of the population.

Table 3.2: Population parameters and estimated R0 for the Congo 1995 and the
Uganda 2000 Ebola outbreaks. Notice that even though our expression for R0 is
independent of N , our model is not independent of N and hence the corresponding
population sizes for Congo and Uganda are used in the least-squares estimation of
the parameters.

Outbreak Eff. Pop. (N) Start of interv. Fatal. rate (%) R0 S.D. R0

Congo 1995 5, 364, 500∗ May 9, 1995 [7] 81% [7] 1.83 0.06

Uganda 2000 1, 867, 200 ¶ Oct 22, 2000 [8] 53% [8] 1.34 0.03

†95 % CI (Figure 3.3).
∗Adjusted from population size of the Bandundu region in 1984 [69] using the

annual population growth rates [70].
¶Adjusted from the population sizes of the districts of Gulu, Masindi and Mbara

(where the outbreak developed) in 1991 using the annual population growth rates
[71].
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3.2.7 Uncertainty Analysis on R0

Log-normal distributions seem to model well the incubation period distributions

for a large number of diseases [74]. Here, a log-normal distribution is assumed

for the incubation period of Ebola in our uncertainty analysis. Log-normal distri-

bution parameters are set from empirical observations (mean incubation period is

6.3 and the 95% quantile is 21 days [2]). The infectious period is assumed to be

uniformly distributed in the range (3.5 − 10.7) days [3].

A formula for the basic reproductive number R0 that depends on the initial per-

capita rate of growth r in the number of cases (Figure 3.4), the incubation period

(1/k) and the infectious period (1/γ) can be obtained by linearizing equations Ė

and İ of system (4.3) around the disease-free equilibrium with S = N . The corre-

sponding Jacobian matrix is given by:

J =

 −k β

k −γ

 ,

and the characteristic equation is given by:

r2 + (k + γ)r + (γ − β)k = 0

where the early-time and per-capita free growth r is essentially the dominant eigen-

value. By solving for β in terms of r, k and γ, one can obtain the following ex-

pression for R0 using the fact that R0 = β/γ:

R0 = 1 +
r2 + (k + γ)r

kγ
.

Our estimate of the initial rate of growth r for the Congo 1995 epidemic is r = 0.07
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day−1, obtained from the time series y(t), t < τ of the cumulative number of cases

and assuming exponential growth (y(t) ∝ ert). The distribution of R0 (Figure 3.4)

lies in the interquartile range (IQR) (1.66−2.28) with a median of 1.89, generated

from Monte Carlo sampling of size 105 from the distributed epidemic parameters

(1/k and 1/γ) for fixed r [54]. We give the median of R0 (not the mean) as the

resulting distribution of R0 from our uncertainty analysis is skewed to the right.
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Figure 3.4: (Top) cumulative number of cases (log-lin scale) during the exponential
growth phase of the Congo 1995 epidemic as identified by the date of start of
interventions (09 May 1995 [7]). The model-free initial growth rate of the number
of cases for Congo 1995 is 0.07 (linear regression); (bottom) estimated distribution
of R0 from our uncertainty analysis (see text). R0 lies in the interquartile range
(IQR) (1.66 − 2.28) with a median of 1.89. Notice that 100% of the weight lies
above R0 = 1.

3.3 Results

Using our parameter estimates (Table 3.1), we estimate an R0 of 1.83 (SD 0.06) for

Congo (1995) and 1.34 (SD 0.03) for Uganda (2000). The effectiveness of interven-

tions is often quantified in terms of the reproductive number Rp after interventions

are put in place. For the case of Congo Rp = 0.51 (SD 0.04) and Rp = 0.66 (SD
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0.02) for Uganda allowing us to conclude that in both cases, the intervention was

successful in controlling the epidemic. Furthermore, the time to achieve a trans-

mission rate of β0+β1

2 (th) is 0.71 (95% CI (0.02, 1.39)) days and 0.11 (95% CI

(0, 0.87)) days for the cases of Congo and Uganda respectively after the time at

which interventions begin.

We use the estimated parameters to simulate the Ebola outbreaks in Congo (1995)

and Uganda (2000) via Monte Carlo simulations of the stochastic model of Section

2.1 [67]. There is very good agreement between the mean of the stochastic simula-

tions and the reported cases despite the “wiggle” captured in the residuals around

the time τ of the start of interventions (Figure 3.5). The empirical distribution of

the final epidemic sizes for the cases of Congo 1995 and Uganda 2000 are given in

Figure 3.6.

The final epidemic size is sensitive to the start time of interventions τ . Numerical

solutions (deterministic model) show that the final epidemic size grows exponen-

tially fast with the initial time of interventions (not surprising as the intial epidemic

growth is driven by exponential dynamics). For instance, for the case of Congo,

our model predicts that there would have been 20 more cases if interventions had

started one day later (Figure 4.7).

3.4 Discussion

Using epidemic-curve data from two major Ebola hemorrhagic fever outbreaks

[7, 8], we have estimated the basic reproductive number (R0) (Table 3.2). Our es-

timate of R0 (median is 1.89) obtained from an uncertainty analysis [54] by simple

random sampling (Figure 3.4) of the parameters k and γ distributed according to

empirical data from the Zaire (now the Democratic Republic of Congo) 1976 Ebola
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Figure 3.5: (Top) Comparison of the cumulative number of Ebola cases during the
Congo 1995 and Uganda 2000 Ebola outbreaks, as a function of the time of onset
of symptoms. Black circles are data. The solid line is the average of 250 Monte
Carlo replicates and the error bars represent the standard error around the mean
from the simulation replicates using our parameter estimates (Table 3.1). For the
case of Congo 1995, simulations were begun on 13 Mar 1995. A reduction in the
transmission rate β due to the implementation of interventions occurs on 09 May
1995 (day 56) [7]. For the case of Uganda 2000, simulations start on 27 August 2000
and interventions take place on 22 October 2000 (day 56) [8]; (bottom) comparison
of the residuals (difference between the data and the model best fit) scaled by the
standard deviation for the cases of Congo and Uganda.

outbreak [2, 3] is in agreement with our estimate of R0 = 1.83 from the outbreak

in Congo 1995 (obtained from least squares fitting of our model (4.3) to epidemic

curve data).

The difference in the basic reproductive numbers R0 between Congo and Uganda is

due to our different estimates for the infectious period (1/γ) observed in these two

places. Their transmission rates β0 are quite similar (Table 3.1). Our estimate for

the infectious period for the case of Congo (5.61 days) is slightly larger than that of

Uganda (3.50 days). Clearly, a larger infectious period increases the likelihood of

infecting a susceptible individual and hence increases the basic reproductive num-
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Figure 3.6: The final epidemic size distributions for the cases of Congo 1995 and
Uganda 2000 obtained from 250 Monte Carlo replicas. Crosses (X) represent the
final epidemic size from data.

ber. The difference in the infectious periods might be due to differences in virus

subtypes [75]. The Congo outbreak was caused by the Ebola-Zaire virus subtype

[7] while the Uganda outbreak was caused by the Ebola-Sudan virus subtype [8].

The significant reduction from the basic reproductive number (R0) to the post-

intervention reproductive number (Rp) in our estimates for Congo and Uganda

shows that the implementation of control measures such as education, contact

tracing and quarantine will have a significant effect on lowering the effective repro-

ductive rate of Ebola. Furthermore, estimates for the time to achieve β0+β1

2 have

been provided (Table 3.1).

We have explored the sensitivity of the final epidemic size to the starting time of

interventions. The exponential increase of the final epidemic size with the time of

start of interventions (Figure 4.7) supports the idea that the rapid implementation

of control measures should be considered as a critical component in any contin-

gency plan against disease outbreaks specially for those like Ebola and SARS for
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Figure 3.7: Sensitivity of the final epidemic size to the time of start of interven-
tions. Here negative numbers represent number of days before the actual reported
intervention date (Table 3.2) and positive numbers represent a delay after the ac-
tual reported intervention date (τ = 0). All other parameters have been fixed to
their baseline values (Table 3.2). The final epidemic size grows exponentially as
expected with the time of interventions with a rate of 0.06 for the case of Congo
and 0.05 for the case of Uganda.

which no specific treatment or vaccine exists. A two-week delay in implementing

public health measures results in an approximated doubling of the final outbreak

size. Moreover, because the existing control measures cut the transmission rate to

less than half, we should seek and support further improvement in the effective-

ness of interventions for Ebola. A mathematical model that considers basic public

health interventions for SARS control in Toronto supports this conclusion [51, 76].

Simulation results show that small perturbations on the rate q at which interven-

tions are put fully in place do not have a significant effect on the final epidemic

size. The rapid identification of an outbreak, of course, remains the strongest de-

terminant of the final outbreak size.

Field studies of Ebola virus are difficult to conduct due to the high risk imposed

on the scientific and medical personnel [77]. Recently, a new vaccine that makes
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use of an adenovirus technology has been shown to give cynomolgus macaques

protection within 4 weeks of a single jab [78, 79]. If the vaccine turns out to be

effective in humans, then its value should be tested. A key question would be

“What are the conditions for a successful target vaccination campaign during an

Ebola outbreak?” To address questions of this type elaborate models need to be

developed.



Chapter 4

Modeling the 2001 Foot-and-Mouth

Epidemic in Uruguay using

Geo-referenced Data

4.1 Introduction

Foot and mouth disease (FMD) is a highly infectious illness caused by an aph-

thovirus that affects cloven-hoofed animals such as pigs, cattle, and sheep. In-

fected animals shed large amounts of the virus through the mouth and nose. Viral

particles can survive in objects such as shoes, clothes, or vehicle tires. The wind

can carry the virus long distances [80]. Typically one outbreak will not reoccur in

one region for a long time. For instance, Japan had been FMD free for 92 years

until an outbreak was confirmed in 2000 [81] and Great Britain was FMD free for

33 years before the recent epidemic in 2001 [82].

The power of an infectious disease to cause an epidemic depends on several fac-

tors including the epidemiology of the disease in question, the susceptibility of the

landscape where the infectious agent is introduced and the timely response and

effectiveness of interventions. The basic reproductive number, R0, is the number

of secondary cases generated by a primary case when this is introduced in a pop-

ulation of fully susceptible individuals [66, 34]. That is, R0 measures the power

of a disease to spread under a scenario that facilitates maximal growth (begin-

ning of epidemic). Once an epidemic starts, the number of livestock decreases and

57
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control measures are implemented causing the reproductive number R(t) (where

R(0) = R0) to decay. The objective of any contingency plan is to make R(t) < 1

as soon as possible.

Transmission of FMD can be localized (between adjacent farms [83, 84, 85]).

Long distance transmission through daily milk collection, meat transportation,

animal movement, etc. are also possible. Hence, invalid predictions about the

epidemic could result from ignoring an appropriate spatial component [86, 87]. A

movie of the FMD epidemic in Uruguay in 2001 [88] shows the spatial spread of

FMD. The movie illustrates the importance of including a topology of transmission

when modeling FMD epidemics. Such topology of transmission may include the

distance among farms and the road network.

At least 4 million animals were destroyed during the 2001 FMD epidemic in Great

Britain. The catastrophic economic consequences linked to FMD epidemics make

FMD of great concern to governments. Once an epidemic is put under control, the

exportation of animal goods is not permitted for a period of 6-12 months post out-

break [80]. Hence, governments frequently revise FMD control policy. The value of

selected FMD control policies depends strongly on available data and the “tools”

(models) used to test the policies. For example, during the 2001 FMD epidemic in

Great Briatin, two teams of researchers developed highly refined models to aid in

the decision-making process [83, 84]. Both teams concluded that a culling policy

was the best strategy to control the ongoing FMD epidemic. Their conclusions

relied on data that included the location of farms, farm animal density and animal

heterogeneity within farms. Longitudinal data on the number of farms infected

and the culling process was available [80].
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4.1.1 The 2001 Foot-and-Mouth Epidemic in Uruguay

The first case of the 2001 Foot-and-Mouth Disease (FMD) epidemic in Uruguay

was reported in the state of Soriano close to the border with Argentina on April

23rd [89, 90]. In just a few days, the epidemic had disseminated over the whole

country. The epidemic reached its peak incidence of 66 new cases on May 25th and

1763 cases where reported by July 10th, 2001 (Figure 4.1). From April 25 to April

29 slaughter was implemented (total: 5,295 cattle; 1.481 sheep; 332 pigs) and ani-

mal movement restrictions enforced by the police and the army were implemented

on April 27. However, people movement was never banned (farm personnel con-

tinued to come in and out during the roadblock period). Other control measures

included an awareness campaign to farmers via press release and personal visits

by veterinarians to farms. Controls were implemented in borders, airports and

harbours [90]. Mass vaccination (60 − 70% expected efficacy) started on May 5

with May 28 as the expected completion date (peak protective levels of the serum

antibodies may take up to 14-28 days depending on the vaccine composition). No

high potency vaccines (where the protective immunity is reached within 3-4 days

[91]) were used. The vaccination program did not include calves younger than 3

months, pigs or goats. Vaccines were delivered to county/district veterinarians.

Farmers picked them up and administered them to their own herds. The sec-

ond round of mass vaccination (booster vaccination with expected 100% efficacy)

started on June 15 and was completed on July 22. The fact that this was an infec-

tion introduced into a region where previously it was known to be absent (exotic

disease) and the fact that geo-referenced data exist about its epidemic, the 2001
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FMD epidemic in Uruguay provides an excellent test bed for the the evaluation of

a geo-deterministic model.
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Figure 4.1: a) Daily and b) cumulative number of reported infected farms during
the 2001 Foot and Mouth Disease in Uruguay. The epidemic reached its maximum
of 66 cases on day 33 (25 May 2001). 1763 cases had been reported by day 79 (10
July 2001). Data has been taken from refs. [9, 10, 11]. The periodic dips in the
data are due to low reporting rates on the weekends.

It has been recently shown experimentally in pigs and cattle that the rate of

spread, the incubation period, and the severity of disease depend on the dose re-

ceived, the route of introduction, the animal species and husbandry conditions [92].

These factors are not independent. For example, the dose received is correlated to

the length of the incubation period. The FMD virus is excreted up to 11 days once

symptoms appear [93]. The incubation period for FMD has been reported to be

between 3−6 days with a maximum of 14 days [94, 95, 96]. A recent experimental

study in cattle reports the presence of viral RNA (mouth and nasal swabs) in all
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infected cattle within 24 h post infection and peak levels were reached 1−2.5 days

post infection. In some animals viral RNA was not detected until 7−18 days post

infection [97]. Latent animals progress to an infectious state that lasts for about

8 days. Animals are asymptomatic during the first 5 days of the infectious period

[83]. The remaining 3− 5 days (symptomatic and infectious) [97] is the time that

it takes on average to detect and remove/isolate the infected animals from the rest.

Most animals recover with reduced weight gain or milk yield [84] .

In this article, we model the 2001 FMD epidemic in Uruguay using a spa-

tial deterministic epidemic model that includes geo-referenced data (i.e. euclidean

distances between farms, as estimated in relation to distances between county cen-

troides). Our spatial model is validated by means of a non-spatial model. We

estimate epidemiological and control parameters via least-squares fitting. We then

compute the internal (within counties) and external (across counties) reproductive

numbers before and after interventions were implemented. We also explore the

expected impact of a mass vaccination policy depending on when (how early/late)

it is implemented after an epidemic starts.

4.2 Materials and Methods

The data used in this study includes the inter-county distances (i.e. euclidean

distances between farms, as estimated in relation to distances between county

centroides) as a measure of the connectivity between counties, the times at which

different control strategies were implemented, and epidemic-curve data on the num-

ber of cases reported over time identified by counties obtained from geo-referenced
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case reports.

We first introduce a non-spatial deterministic model with and without interven-

tions. We use this model to validate our deterministic model under spatial con-

siderations before and after interventions. We classify the number of secondary

cases generated by a primary case during during its entire period of infectiousness

as internal and external. Internal secondary cases are generated within counties

and external secondary cases are generated across counties. Since interventions

are not expected to be implemented from the beginning of the epidemic, control

model parameters are time dependent which we estimate by least-squares fitting

techniques. Standard deviations for each of the estimated parameters are also pro-

vided which can be used to construct confidence intervals.

4.2.1 Data

We grouped the 19 Uruguayan states into three contiguous regions (Region I, II

and III) in the map of Uruguay (Figure 4.2 b). Table 4.1 shows the distribution

of the number of counties per state and the mean density of farms per county in

each Uruguayan state. Figure 4.3 shows the distribution of all the inter-county

distances. Using geo-referenced case reports obtained from public records of the

Uruguayan Ministry of Livestock, Agriculture, and Fisheries (MGAP), the Pan-

american Health Organization, and the World Organization for Animal Health

(OIE) [9, 10, 11], we generate a table of the number of daily new reported infected

farms during the first 79 days of the epidemic. That is, a table of the form (ti,xi),

i = 1, ..., 1763 where ti denotes the time and xi the location of the ith reporting

infected farm. Each infected farm can be associated geographically to a region,
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state, and county. Table 4.2 shows that the focus of the epidemic was in region I

where the epidemic started (57% of total infected farms) which includes states of

Soriano (26%), Colonia (21%) and Rio Negro (10%).

Figure 4.2: a) The initial intrinsic growth rate r in Region I, II and III are 0.65,
0.35, and 0.19 respectively ; b) Region I, II and III comprise 3, 7 and 8 Uruguayan
states respectively (see Table 4.2). We estimate the intrinsic growth rate in region
III using the cumulative number of cases from 02 May to 07 May 2001 due to
underreporting of number of cases before 02 May 2001. The intrinsic growth rate
after 07 May 2001 is approximately the same in the three regions once movement
restrictions and some depletion in the number of susceptible farms had taken place.
Mass vaccination started on 05 May 2001.

4.2.2 Non-spatial Epidemic Model

Susceptible farms (class S) in contact with the virus enter the latent class L at

the rate β̂I/N , where β̂0 is transmission rate per day, N is the total number of

farms, and I/N is the probability that a contact is made with a infectious farm (i.e.

uniform mixing). Latent farms progress to the infectious state after a mean time

of 1/k̂ days and stay there for a mean time of 1/α̂0 days until these are properly

“removed/isolated” from the rest (class J). The above transmission process is mod-

eled by the following system of nonlinear ordinary differential equations [66, 34, 98]:
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Table 4.1: Distribution of the number of counties per state and the average number
of farms per county (Nj).

Region I Region II Region III

State Count. Nj State Count. Nj State Count. Nj

Soriano 12 140 Paysan. 13 121 Artigas 12 118

Colonia 18 151 Salto 16 111 Rivera 10 206

Rio Negro 13 71 S. Jose 10 243 C. Largo 14 196

Flores 9 91 Lavalleja 14 235

Florida 16 152 Rocha 12 190

Tacuar. 16 7 T. y Tres 11 163

Durazno 15 136 Maldon. 13 136

Canelones 27 141

Ṡ(t) = −β̂0S(t)I(t)/N

L̇(t) = β̂0S(t)I(t)/N − k̂L(t)

İ(t) = k̂L(t) − α̂0I(t)

J̇(t) = α̂0I(t)

(4.1)

where S(t), L(t), I(t), and J(t) denote the number of susceptible, exposed, infec-

tious, and removed/isolated farms at time t (the dot denotes rate of change with

respect to time). The basic reproductive number R̂0 for this model is the product

of the transmission rate and the period of infectiousness:

R̂0 = β̂0/α̂0.
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Table 4.2: Distribution of the total number of infected farms among the different
Uruguayan states within each defined contiguous region.

Region I Region II Region III

State Inf. Tot. State Inf. Tot. State Inf. Tot.

Soriano 463 1682 Paysan. 64 1567 Artigas 34 1421

Colonia 362 2724 Salto 56 1783 Rivera 14 2064

Rio Negro 178 925 S. Jose 68 2430 C. Largo 26 2744

Flores 62 816 Lavalleja 15 3296

Florida 109 2436 Rocha 12 2284

Tacuar. 111 2427 T. y Tres 59 1797

Durazno 92 2043 Maldon. 12 1773

Canelones 25 3800

Overall Tot. 1003 5331 562 13502 198 19179

4.2.3 Non-spatial Epidemic Model with Interventions

Our non-spatial model with interventions is given by the system of nonlinear or-

dinary differential equations:

Ṡ(t) = − ˆβ(t)S(t)I(t)/N − ν̂S

V̇ (t) = ν̂S − ˆβ(t)V (t)I(t)/N − µ̂V

L̇(t) = ˆβ(t)(S(t) + V (t))I(t)/N − k̂L(t)

İ(t) = k̂L(t) − α̂I(t)

J̇(t) = α̂I(t)

Ṗ (t) = µ̂V (t)

(4.2)

Here V is the class of vaccinated but not yet protected farms. The farms in
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V are not fully protected since it takes a few days before vaccinated farms reach

protective levels. As the farms in V become fully protected, they enter the pro-

tected class P . Susceptible farms are vaccinated at rate ν̂ and vaccinated farms in

class P reach protective levels at rate µ̂. The parameters ˆβ(t), ˆα(t), ˆν(t), and ˆµ(t)

depend on time since control measures cannot be implemented simultaneously but

rather at different times during the epidemic.

ˆβ(t) =

 β̂0 t < τm

β̂ t ≥ τm

ˆα(t) =

 α̂0 t < τv

α̂ t ≥ τv

ˆν(t) =

 0 t < τv

ν̂ t ≥ τv

ˆµ(t) =

 0 t < τv

µ̂ t ≥ τv

Here τm (27 April 2001) is the time at which movement restrictions were put in

place and τv (05 May 2001) is the time at which mass vaccination started.

4.2.4 Spatial Epidemic Model

We model the FMD epidemic at the level of farms or premises aggregated at the

level of counties (Table 4.1). We classify farms as susceptible (S), latent (L), in-

fectious and undetected (I), and detected and removed (J). A susceptible farm
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in county i in contact with the virus enters the latent (uninfectious and asymp-

tomatic) class (L) at rate
∑n

j=1 βijIj that includes the influence from all the infected

farms in all counties j where the transmission rate βij between farms in counties

i and j decays exponentially fast with the euclidean distance of their respective

county centroides. Hence, the transmission rate βij between farms in counties i

and j (mixing matrix [99]) can be expressed as:

βij = β0 e−qdi,j

where β0 is the average transmission rate of infectious farms within each county,

dij is the distance between counties i and j (i.e. euclidean distances between farms,

as estimated in relation to distances between county centroides, Figure 4.3), and q

quantifies the extent of local spread (or 1/q can be interpreted as the FMD mean

transmission range). Latent farms progress to the infectious state after a mean

time of 1/k days and the infectious farms are detected and isolated from the rest

at rate α. The spatial transmission dynamics of Foot-and-Mouth Disease can be

modeled by the system of nonlinear ordinary differential equations:

Ṡi = −Si

∑n
j=1 βijIj

L̇i = Si

∑n
j=1 βijIj − kLi

İi = kLi − αIi

J̇i = αIi

(4.3)

The dot denotes time derivatives where Si, Li, Ii, and Ji denote the number

of susceptible, latent, infectious, and removed/isolated farms in each county i

(i = 1, 2, ..., n). The distribution of the number of farms in the different counties is
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given in Table 4.1. Our spatially dependent transmission rate βij is analogous to

the patch connectivity index in the context of metapopulation dynamics [100, 101]

where dij could be some measure of the influence of the landscape on migration

[102]. dij could be used as an “index” that could incorporate wind direction and

animal heterogeneity within farms (dairy, beef, etc.). Here, we assume that the

county connectivity dij is well approximated by the distance between counties.

Figure 4.3: a) Map of Uruguay with state (color) and county divisions; b) distribu-
tion of inter-county (euclidean) distances which were obtained using a geographic
information system (GIS). The centroide of each county is used to compute eu-
clidean distances.

The Basic Reproductive Number R0

Unfortunately, we do not know an analytical expression for R0 for our multi-county

model (4.3). However, we can estimate the basic reproductive number using model

parameter estimates [103].

We define the internal (within counties) basic reproductive number of county i,

Rin
0i

, as the number of secondary cases generated by a primary case in county
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i within the same county and is given by Rin
0i

= β0Ni/α. Similarly, we define

the external (across counties) basic reproductive number of county i, Rout
0i

, as the

number of secondary cases generated by a primary case in county i in any other

county j where j /= i and is given by Rout
0i

=
∑n

j $=i β0Nj e−qdij/α.

4.2.5 Spatial Epidemic Model with Interventions

Our model with interventions is given by the system of nonlinear ordinary differ-

ential equations:

Ṡi = −Si(t)
∑n

j=1 βij(t)Ij(t) − ν(t)Si(t)

V̇i = ν(t)Si(t) − Vi(t)
∑n

j=1 βij(t)Ij(t) − µ(t)Vi(t)

L̇i = (Si(t) + Vi(t))
∑n

j=1 βij(t)Ij(t) − k(t)Li(t)

İi = k(t)Li(t) − α(t)Ii(t)

J̇i = α(t)Ii(t)

Ṗi = µ(t)Vi(t)

(4.4)

where susceptible farms in county i (Si) are vaccinated at rate ν (Vi). Vaccinated

farms in Vi enter the protected class Pi at rate µ. The total cumulative number of

reported infected farms as a function of time is given by C(t) =
∑n

i=1 Ji(t) and the

daily number of new reported infected farms is given by ˙C(t) . The parameters

β(t), α(t), ν(t), and µ(t) depend on time in the same manner as in the non-spatial

model.
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The Reproductive Number

Once movement restrictions (the first intervention implemented) were implemented

five days after the first reported infected farm, the internal and external reproduc-

tive numbers of county i are given by Rin
mi

= βNi/α and Rout
mi

=
∑n

j $=i βNj e−qdij/α.

The second type of interventions consisted of a mass vaccination program that

started nine days after movement restrictions were implemented. The reproductive

number that considers the effects of the mass vaccination program after movement

restrictions can be defined as a function of the effective time T elapsed from the

beginning of mass vaccination at time tv to time t. That is, T = t − tv − 1/µ

where 1/µ is the mean time it takes vaccinated farms to reach protective antibody

levels. The internal and external reproductive numbers can be estimated using

R(T )in
i = (βNi/α) s∗i and R(T )out

i = (
∑n

j $=i βNj e−qdij s∗j/α) where i =1, 2, ..., n

counties and s∗i =

 0 1 ≤ Tν

1 − Tν Tν < 1
.

4.2.6 Parameter Estimation

The model parameters Θ =(β(t), k(t), α(t), q(t), ν(t), µ(t)) are fitted to the

cumulative number of reported farms (ti, yi) where ti denotes the ith reporting time

(79 reporting days) and yi is the cumulative number of reported farms by least-

squares fit to C(t,Θ) in Region I (where the outbreak started and the majority of

cases occurred). This gives a system of 5 (equations per county) * 42 (counties in

region I) = 210 differential equations. Farm density of each county is given in Table

4.1. We wrote a MATLAB program to carry out the least squares fitting procedure

with appropriate initial conditions (0 < β < 100, 1/5 < k < 1/3, 1/12 < α < 1/4,

0 < q < 10, 0 < ν < 10, 0 < µ < 10).
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The asymptotic variance-covariance AV (θ̂) of the least-squares estimate using a

Brownian bridge in the error structure is

AV(θ̂) = σ2 B(Θ0) ∇C(Θ0)
T G ∇C(Θ0) B(Θ0)

where B(Θ0) = [∇C(Θ0)
T ∇C(Θ0)]−1. AV(θ̂) is estimated by

σ2 B̂(Θ̂) ∇Ĉ(Θ̂)
T

G ∇Ĉ(Θ̂) B̂(Θ̂)

where B̂(Θ̂) = [∇Ĉ(Θ̂)
T ∇Ĉ(Θ̂)]−1 , n is the total number of observations, G

is an n x n matrix such that Gi,j = (1/n) min(i, j) − (ij)/n2, σ̂2 = 1/(I1xn G

Inx1)
∑

(yi − C(ti, Θ̂))2 and ∇Ĉ are numerical derivatives of C(Θ̂).

4.3 Results

The initial intrinsic growth rate r (assuming initial exponential growth rate y ∝ ert)

is 0.65, 0.35, and 0.19 for Regions I, II, and III respectively (Figure 4.2 b). These

growth rates decayed as awareness of the epidemic increased and enforced move-

ment restrictions (epidemic started to spread from Region I onwards ) became

more established. After 07 May 2001 the rate of growth was about the same in

the three regions (see Figure 4.2 a). Therefore to reduce the complexity, we ana-

lyze the case incidence data of Region I, where the epidemic focused (57% of total

cases).

The non-spatial epidemic model (4.2) fit to the cumulative number of infected
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farms shows a systematic deviation from the epidemic data during the first 20

days of the epidemic (Figure 4.4). The model parameter estimates are given in

Table 4.3. We then fit the cumulative number of reported farms in Region I using

our spatial model with interventions (4.4). Our model agrees well with the data

(Figure 4.5) and the parameter estimates are in agreement with FMD epidemiol-

ogy (see Table 4.4). Furthermore, our model predicts a two-hump epidemic with

the second hump being of higher amplitude. Such dynamics can be explained by

sparks of infection reaching pockets of susceptible farms [83].
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Figure 4.4: a) The daily and b) cumulative number of reported infected farms
in Region I (Figure 4.2) where the outbreak started (23 April 2001) and focused
(57% of cases). Movement restrictions were implemented on 27 April 2001 and
mass vaccination started on 05 May 2001. Circles are the data and the solid line is
the best-fit solution of the deterministic model equations of the nonspatial model
(4.2) to the data via least squares fitting (parameter estimates are given in Table
4.3).

The “free course” of the epidemic only includes approximately 5 days of data
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Table 4.3: Parameter definitions and estimates obtained from least-squares fitting
of the non-spatial epidemic model (4.2) to the cumulative number of infected farms
over time (days) in Region I (Figure 4.4). All the parameters have units 1/ days.

Params. Definition Estim. SD

β̂0 Transm. rate between farms before mov. restrict. 0.77 0.04

β̂ Transm. rate between farms after mov. restrict. 0.49 0.08

α̂0 Rate of removal from inf. state before mov. restrict. 0.16 0.07

α̂ Rate of removal from inf. state after mov. restrict. 0.14 0.02

k̂ Rate of progression from latent to infectious state 0.26 0.07

ν̂ Vaccination rate of susceptible farms 0.16 0.04

µ̂ Rate at which vaccinated farms become protected 0.31 0.05

(movement restrictions were rapidly enforced by the police and the army) and

hence parameter estimates of the transmission rate and the infectious period dur-

ing the initial “free” growth of the epidemic could be somewhat uncertain. Our

estimate of the transmission rate (β0) before movement restrictions is 0.33 (SD

0.13) farm−1 day−1 compared to our estimate β = 0.10 (SD 0.03) farm−1 days−1

after movement restrictions were put in place. The difference between the rates

of identification isolation of infected farms before and after movement restrictions

were put in place (α0 = 0.14 (SD 0.02), α = 0.14 (SD 0.02)) is not statistically

significant.

Our estimate of the basic reproductive number (R0 ≈ 355) from model (4.3) was

computed following van den Driessche & Watmough [103] approach based on the

difference of the rate of inflow of new infections in compartment j (fj) and the

inflow and outflow rates of indi viduals in compartment j by all other epidemio-

logical processes (vj). This large estimate of R0 reflects the explosive rate at which
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Figure 4.5: a) The daily and b) cumulative number of reported infected farms
in Region I (Figure 4.2) where the outbreak started (23 April 2001) and focused
(57% of cases). Movement restrictions were implemented on 27 April 2001 and
mass vaccination started on 05 May 2001. Circles are the data and the solid line
is the best-fit solution of the deterministic model equations of the spatial model
(4.4) to the data via least squares fitting (parameter estimates are given in Table
4.4).

FMD can spread.

The average internal and external basic reproductive numbers R̄0
in ≈ 280.47 and

R̄0
out ≈ 2.64 respectively before movement restriction were enforced. After move-

ment restrictions were implemented, R̄m
in ≈ 87.20 and R̄m

out ≈ 0.82. After mass

vaccination started, our model predicts that the internal basic reproductive num-

ber rapidly decreased to a number less than one on day 25 (16 May 2001) of the

epidemic.

Our estimate of the vaccination rate of susceptible farms (ν) is 0.25 (SD 0.09). That

is, we estimate a mean time of approximately 4 days before a susceptible farm was

successfully vaccinated. Since it takes a few days before vaccinated animals reach
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Table 4.4: Parameter definitions and estimates obtained from least-squares fitting
of the spatial epidemic model (4.4) to the cumulative number of infected farms over
time (days) in Region I (Figure 4.5). All the parameters have units 1/ days except
for q whose units are 1/Km. ∗ Small values of q lead to widespread influence,
whereas large q supports local spread. Great mobility and frequent interactions
among farms would lead to small values of q.

Params. Definition Estim. SD

β0 Transm. rate within counties before mov. restrict. 0.33 0.13

β Transm. rate within counties after mov. restrict. 0.10 0.03

α0 Rate of removal from inf. state before mov. restrict. 0.14 0.02

α Rate of removal from inf. state after mov. restrict. 0.14 0.02

k Rate of progression from latent to infectious state 0.28 0.05

q∗ Positive constant quantifying extent of local spread 1.03 0.10

ν Vaccination rate of susceptible farms 0.25 0.09

µ Rate at which vaccinated farms become protected 0.14 0.03

protective levels, we estimate the rate at which vaccinated farms reach protective

antibody levels (µ). Our estimate is 0.14 (SD 0.03) days−1. That is, we estimate

7.14 days before successfully vaccinated farms became protected. The mass vacci-

nation program implemented during the 2001 FMD epidemic in Uruguay reduced

the final epidemic size to 1003 (18.8%) infected farms in Region I compared to 5251

(98.5%) if no mass vaccination had been implemented after movement restrictions

(multiple outbreaks are observed, Figure 4.6). A 5-day delay in its implementation

with respect to the actual implementation date yields 1501 (28.2%) infected farms.

Moreover, if the vaccination program had been implemented 5 days prior to the

actual date, our model predicts only 629 (11.8%) infected farms (Figure 4.6). The

sensitivity of the final epidemic size to the time of starts of the mass vaccination

program is shown in Figure 4.7.
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We quantify the extent of local spread through the parameter q. Small values of q

lead to widespread influence, whereas large q supports local spread. Our estimate

for q is 1.03 1/Km (SD 0.10). That is, our estimate of the mean transmission range

(1/q) is approximately 0.97 Km.
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Figure 4.6: a) The daily and b) cumulative number of reported infected farms
in Region I (Figure 4.2) where the outbreak started (23 April 2001) and focused
(57% of cases). Movement restrictions were implemented on 27 April 2001 and
mass vaccination started on 05 May 2001. Circles are the data and the solid line is
the best-fit solution of the deterministic model equations (4.4) to the data via least
squares fitting (parameter estimates are given in Table 4.4). Three scenarios are
shown: (dash-dot) no mass vaccination implemented after movement restrictions
(total of 5252 cases); (dot-dot) mass vaccination with a 5-day delay (1551 cases)
and (dash-dash) 5 days before the actual date at which mass vaccination started
(604 cases).

4.4 Discussion

Mathematical models have played an important role in the decision-making pro-

cess in the control of FMD epidemics and its economic consequences [82, 84, 83,
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Figure 4.7: Sensitivity of the final epidemic size (Region I) to the time of start of
the mass vaccination program. Negative numbers represent number of days before
the actual reported start of the mass vaccination progrme (05 May 2001) while
positive numbers represent a delay (days).

104, 105, 106, 107, ?, 108]. During the 2001 FMD epidemic in Great Britain dif-

ferent approaches were used and included “moment closure” technique [84] and

stochastic models [83, 104]. Here, we model the 2001 FMD epidemic in Uruguay

using a deterministic model that takes into account the distance among counties

in the transmission process (Figure 4.3), farm density within counties (Table 4.1)

and information on the intervention strategies that were put in place during the

outbreak.

Our spatial deterministic model is validated by means of a non-spatial model (4.2)

that assumes uniform risk of infection among farms. Our spatial model differed

with its non-spatial counterpart in: a) non-spatial model fit to the data shows a

systematic deviation from epidemic data during the initial epidemic take-off and
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b) the spatial model displays a double hump in the time series of the daily number

of infected farms, pattern not observed under the non-spatial model. We assume

that the spatial location of farms play an important role in the transmission dy-

namics of FMD as a first order approximation. As most models for FMD, our

model do not include road density considerations. Nevertheless, given data be-

come available, the road density factor could play a significant role in capturing

higher resolution epidemic patterns within states or counties as this measure can

be highly heterogeneous. We did not incorporate farm heterogeneity (i.e dairy,

beef, etc) in the transmission process [109] and may be considered if appropri-

ate data become available. Notwithstanding the relatively basic aspects of FMD

transmission considered here, our model is able to capture regional patterns of the

2001 Uruguay FMD epidemic.

By fitting our model to epidemic-curve data on the cumulative number of reported

farms, we are able to estimate relevant epidemiological parameters including the

average transmission rate within counties (before and after movement restrictions

were put in place) (β0, β), the incubation period (1/k), the infectiousness period

(before and after movement restrictions were put in place) (1/α0, 1/α), and control

parameters: mean time before susceptible farms are vaccinated (1/ν) and the mean

time it takes for vaccinated farms to achieve protective antibody levels (1/µ). Epi-

demiological and control parameter estimates are given in Table 4.4. We observe

a reduction by a factor of 3 in the transmission rate before and after movement

restrictions were enforced (Table 4.4). However, we find no difference between the

infectious period before and after movement restrictions were implemented.

Our spatial epidemic model captures a two-hump outbreak in the transmission

dynamics of the 2001 FMD epidemic in Uruguay (Figure 4.5). Such dynamics can-
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not be reproduced using fully mixed systems. In our spatial model, such dynamics

arise from long distance sparks of infection which can trigger secondary outbreaks.

Moreover, secondary “humps” of infection can be of higher intensity as the 2001

FMD epidemic in Uruguay showed (Figure 4.5).

Our estimate of the basic reproductive number (R0 ≈ 355) is large and this can be

explained by the spatial transmission parameter that dominate the course of FMD

epidemics. The basic reproductive number for spatial models must be much higher

for epidemics to occur [110] because of the more localized transmission dynamics.

Woolhouse et al. (1996) [111] report a basic reproductive number for an FMD-

infected animal to be between 2 and 73. Our R0 estimates are given in terms the

number of secondary infected farms generated by a primary infectious farm during

its infectious period in a fully susceptible landscape.

More useful information can be obtained by looking at the number of secondary

cases generated within counties and between counties. Before movement restric-

tions were implemented, the average number of secondary cases generated exter-

nally to counties (external basic reproductive number) was R̄0
out ≈ 2.64. However,

once movement restriction had been enforced on 27 April 2001, the average num-

ber of external secondary cases declined to a number less than one (R̄m
out ≈ 0.82)

which indicates that once movement restrictions had been put in place, the trans-

mission process was mostly confined to within counties with rarely long distance

(at the level of counties) transmission events. This drop in the reproductive num-

ber is in agreement with the reduction of the intrinsic growth rate r observed in the

data (Figure 4.2 a). This is also supported by our parameter estimate 1/q = 0.97

(Km) characterizing the extent of local spread or the average transmission range

of the disease under the assumption of uniform mixing of farms within counties.
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We estimate that the reproductive number within counties decayed to a number

less than one approximately 12 days after the mass vaccination program started.

Our model predicts a reduction in the final epidemic size of 374 infected farms in

Region I (see Figure 4.6 b) if mass vaccination had started 5 days prior to the

actual date. Moreover, our model predicts no secondary “humps” of infection of

higher intensity under this scenario (Figure 4.5) which can be explained by the

higher number of vaccinated farms achieved by starting mass vaccination earlier.

A 5-day delay in its implementation had generated 498 more cases (Figure 4.6).

This highlights the effects of delays in the implementation of control measures

which are tightly linked to the economic impact of the epidemic. Figure 4.7 shows

the sensitivity of the final epidemic size in Region I to the time of start of mass

vaccination.

There is only few data on the different aspects of the vaccine and the vaccination

program including the vaccination coverage (since not all the susceptible animals

are vaccinated for several reasons) and the vaccine efficacy which can be very differ-

ent from the one observed in the field. During the epidemic, neither young calves

were vaccinated (< 3 month-olds). Pigs and sheep were not vaccinated either [90].

The vaccine utilized for the mass vaccination program was specific. That is, the

vaccine targetted to the virus observed during the FMD epidemic (virus type A24

[90]). The age, health, and stress of the livestock influences the animal’s response

and the effectiveness of the vaccine (the “responders” index). Furthermore, some

animals do not reach protective antibody levels from those who generate immune

response. For the 2001 FMD epidemic in Uruguay, we estimate 7.14 days for suc-

cessfully vaccinated farms to reach antibody protective levels.
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4.5 Conclusions

• FMD epidemic models incorporating spatial structures can capture regional

patterns of spread

• Long distance sparks of infection reaching areas of susceptible farms can

generate multiple peaks in the global infection rates. In contrast to spatially

structured models, spatially homogeneous models are unable to reproduce

such patterns of infection

• Our model predicts the basic reproductive number will rapidly decrease after

movement restrictions are imposed. This observation agrees with the rapid

decrease in the intrinsic growth rate observed in the incidence data (Figure

4.2 a)

• There was a rapid drop in the external reproductive number to less than

one after movement restrictions were enforced. Following these restrictions,

transmissions were localized and there was a very low probability for long-

range transmission events. Hence, ensuring that movement restrictions are

strictly enforced is crucial in any contingency plan against FMD

• Mass vaccination implemented along with a policy of movement restrictions

is an effective means of control and significantly reduces the final epidemic

size.

• The 2001 FMD Uruguayan epidemic data and analysis can be used for com-

parison when assessing other control measures such as culling policies and

higher potency vaccines implemented alone or in combination with other

interventions.



Chapter 5

Scaling laws for the movement of people

between locations in a large city *

5.1 Introduction

Similar scaling laws and patterns have been detected in a great number of sys-

tems found in nature, society, and technology. Networks of scientific collaboration

[112][113][114], movie actors [115], cellular networks [116][117], food webs [118],

the Internet [119], the World Wide Web [120, 121], friendship networks [122] and

networks of sexual relationships [123] among others have been analyzed up to some

extent. Several common properties have been identified in such systems. One such

property is the short average distance between nodes, that is, a small number of

edges need to be traversed in order to reach a node from any other node. Another

common property is high levels of clustering [115, 124], a characteristic absent in

random networks [125]. Clustering measures the probability that the neighbors

of a node are also neighbors of each other. Networks with short average distance

between nodes and high levels of clustering have been dubbed “small worlds”

[115, 124]. Power-law behavior in the degree distribution is another common prop-

erty in many real world networks [126]. That is, the probability that a randomly

chosen node has degree k decays as P (k) ∼ k−γ with γ typically between 2 and 3.

Barabási and Albert (BA) introduced an algorithm capable of generating networks

with a power-law connectivity distribution (γ = 3). The BA algorithm generates

∗G. Chowell , J. M. Hyman, S. Eubank, C. Castillo-Chavez. Scaling Laws for
the Movement of People between Locations in a Large City. Physical Review E 68
(2003).
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networks where nodes connect, with higher probability, to nodes that have a accu-

mulated higher number of connections and stochastically generates networks with

a power-law connectivity distributions in the appropriate scale.

Social networks are often difficult to characterize because of the different percep-

tions of what a link constitutes in the social context and the lack of data for large

social networks of more than a few thousand individuals. Even though detailed

data on the daily movement of people in a large city does not exist, these systems

have been statistically sampled and the data used to build detailed simulations for

the full population. The insights gained by studying the simulated movement of

people in a virtual city can help guide research in identifying what scaling laws

or underlying structures may exist and should be looked for in a real city. In this

article we analyze a social mobility network that can be defined accurately by the

simulated movement of people between locations in a large city. We analyze the

cumulative directed graph generated from the simulated movement of 1.6 million

individuals in or out of 181, 206 locations during a typical day in Portland, OR.

The 181, 206 nodes represent locations in the city and the edges connections be-

tween nodes. The edges are weighted by daily traffic (movement of individuals)

in or out of these locations. The statistical analysis of the cumulative network

reveals that it is a small world with power-law decay in the out-degree distribution

of locations (nodes). The resulting graph as well as subgraphs based on different

activity types exhibit scaling laws consistent with an underlying hierarhical struc-

ture [127, 128]. The out-traffic (weight of the full network) and the total out-traffic

(total weight of the out edges per node) distributions are also fitted to power laws.

We show that the joint distribution of the out-degree and total out-traffic distri-

butions decays linearly in an appropriate scale. We also explore the time evolution
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of the largest component and the distribution of the component sizes.

5.1.1 Transportation Analysis Simulation System (TRAN-

SIMS)

TRANSIMS [129] is an agent-based simulation model of the daily movement of in-

dividuals in virtual region or city with a complete representation of the population

at the level of households and individual travelers, daily activities of the individ-

uals, and the transportation infrastructure. The individuals are endowed with

demographic characteristics taken from census data and the households are geo-

graphically distributed according to the population distribution. The transporta-

tion network is a precise representation of the city’s transportation infrastructure.

Individuals move across the transportation network using multiple modes includ-

ing car, transit, truck, bike, walk, on a second-by-second basis. DMV records

are used to assign vehicles to the households so that the resulting distribution of

vehicle types matches the actual distribution. Individual travelers are assigned

a list of activities for the day (including home, work, school, social/recreational,

and shop activities) obtained from the household travel activities survey for the

metropolitan area [130] (Figure 5.2 shows the frequency of four activity types in a

typical day). Data on activities also include origins, destinations, routes, timing,

and forms of transportation used. Activities for itinerant travelers such as bus

drivers are generated from real origin/destination tables.

TRANSIMS consists of six major integrated modules: Population synthesizer,

Activity Generator, Router, Microsimulation and Emissions Estimator. Detailed

information on each of the modules is available [129]. TRANISMS has been de-

signed to give transportation planners accurate, complete information on traffic
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impacts, congestion, and pollution.

For the case of the city of Portland, OR, TRANSIMS calculates the simulated

movements of 1.6 million individuals in a typical day. The simulated Portland

data set includes the time at which each individual leaves a location and the time

of arrival to its next destination (node). These data are used to calculate the av-

erage number of people at each location and the traffic between any two locations

on a typical day. (Table 1 shows a sample of a Portland activity file generated

by TRANSIMS). Locations where activities are carried out are estimated from

observed land use patterns, travel times and costs of transportation alternatives.

These locations are fed into a routing algorithm that finds the minimum cost

paths that are consistent with individual choices [131, 132, 133]. The simulation

land resolution is of 7.5 meters. The simulator provides an updated estimate of

time-dependent travel times for each edge in the network, including the effects of

congestion, to the Router and location estimation algorithms [129], which generate

traveling plans. Since the entire process estimates the demand on a transportation

network from census data, land use data, and activity surveys, these estimates can

thus be applied to assess the effects of hypothetical changes such as building new

infrastructures or changing downtown parking prices. Methods based on observed

demand cannot handle such situations, since they have no information on what

generates the demand. Simulated traffic patterns compare well to observed traffic

and, consequently, TRANSIMS provides a useful planning tool.

Until recently, it has been difficult to obtain useful estimates on the structure

of social networks. Certain classes of random graphs (scale-free networks [126],

small-world networks [122, 124], or Erdos-Renyi random graphs [125, 134]), have

been postulated as good representatives. In addition, data based models while
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useful are limited since they have naturally focused on small scales [135]. While

most studies on the analysis of real networks are based on a single snapshot of the

system, TRANSIMS provides powerful time dependent data of the evolution of a

location-based network.

5.2 Portland’s location-based network

A “typical” realization by the Transportation Analysis Simulation System (TRAN-

SIMS) simulates the dynamics of 1.6 million individuals in the city of Portland as a

directed network, where the nodes represent locations (i.e. buildings, households,

schools, etc.) and the directed edges (between the nodes) represent the movement

(traffic due to activities) of individuals between locations (nodes). We have an-

alyzed the cumulative network of the whole day as well as cumulative networks

that comprise different time intervals of the day. Here we use the term “activity”

to denote the movement of an individual to the location where the activity will

be carried out. Traffic intensity is modeled by the nonsymmetric mobility matrix

W = (wij) of traffic weights assigned to all directed edges in the network (wij = 0

means that there is no directed edge connecting node i to node j).

5.3 Power law distributions

We calculate the statistical properties of a typical day in the location-based network

of this vitual city from the cumulative mobility data generated by TRANSIMS (see

Table 2).

The average out-degree is < k >=
∑n

i=1 ki/n where ki is the degree for node

i and n is the total number of nodes in the network. For the portland network
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Table 5.1: Sample section of a TRANSIMS activity file. In this example, person
115 arrives for a social recreational activity at location 33005 at 19.25 o’clock and
departs at 21.00 o’clock.

Person ID Location ID Arriv. time(hrs) Depart. time(hrs) Activity type

115 4225 0.0000 7.00 home

115 49296 8.00 11.00 work

115 21677 11.2 13.00 work

115 49296 13.2 17.00 work

115 4225 18.00 19.00 home

115 33005 19.25 21.00 social/rec

115 4225 21.3 7.00 home

220 8200 0.0000 8.50 home

220 10917 9.00 14.00 school

220 8200 14.5 18.00 home

220 3480 18.2 20.00 social/rec

220 8200 20.3 8.6 home
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Figure 5.1: Structure of the location-based network of the city of Portland. The
nodes represent locations connected via directed edges based on the traffic or move-
ment of individuals (activities) between the locations. The weights (wij) of the
edges represent the daily traffic from location i to location j.

< k >= 29.88 and the out-degree distribution exhibits power law decay with scal-

ing exponent (γ ≈ 2.7). The out-traffic (edge weights) and the total out-traffic

(edge-weights per node) distributions are also fitted well by power laws.

The average distance between nodes L is defined as the median of the means

Li of the shortest path lengths connecting a vertex i ∈ V (G) to all other vertices

[136]. For our network, L = 3.1, which is small when compared to the size of the

network. In fact, the diameter (D) of the graph (the largest of all possible shortest

paths between all the locations) is only 8. L and D are measured using a breadth

first search (BFS) algorithm [137] ignoring the edge directions.

The clustering coefficient, C, quantifies the extent to which neighbors of a node
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Figure 5.2: The number of people active in (a) work activities, (b) school activities,
(d) social activities, and (d) home activities as a function of time (hours) during a
‘typical’ day in Portland, Oregon.

are also neighbors of each other [136]. The clustering coefficient of node i, Ci, is

given by

Ci = |E(Γi)| /
(

ki

2

)

where |E(Γi)| is the number of edges in the neighborhood of i (edges connecting

the neighbors of i not including i itself) and
(

ki

2

)
is the maximal number of edges

that could be drawn among the ki neighbors of node i. The clustering coeffi-

cient C of the whole network is C =
∑n

i=1 Ci/n. For a scale-free random graph

(BA model) [126] with 181, 206 nodes and m = 16 [138], the clustering coefficient

Crand ≈ (m−1)
8

(lnN)2

N ≈ 0.0015 [139, 140]. The clustering coefficient for our location-
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Table 5.2: Statistical properties of the Portland’s location-based network. S is the
size of the largest component of the cumulative network during the whole day.

Statistical properties Value

Total nodes (N) 181,206

Size of the cumulative largest component (S) 181,192

Total directed edges (E) 5,416,005

Average out-degree (< k >) 29.88

Clustering coefficient (C) 0.0584

Average distance between nodes (L) 3.1

Diameter (D) 8.0

based network, ignoring edge directions, is C = 0.0584, which is roughly 39 times

larger than Crand.

Highly clustered networks have been observed in other systems [115] includ-

ing the electric power grid of western US. This grid has a clustering coefficient

C = 0.08, about 160 times larger than the expected value for an equivalent ran-

dom graph [136]. The few degrees of separation between the locations of the (highly

clustered) network of the city of Portland “make” it a small world [124, 122, 136].

Many real-world networks exhibit properties that are consistent with un-

derlying hierarhical organizations. These networks have groups of nodes that are

highly interconnected with few or no edges connected to nodes outside their group.

Hierarchical structures of this type have been characterized by the clustering co-

efficient function C(k), where k is the node degree. A network of movie actors,

the semantic web, the World Wide Web, the Internet (autonomous system level),

and some metabolic networks [127, 128] have clustering coefficients that scale as
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k−1. The clustering coefficient as a function of degree (ignoring edge directions)

in the Portland network exhibits similar scaling at various levels of aggregation

that include, the whole network and subnetworks constructed by activity type

(work, school and social/recreational activities, see Figure 5.3). We constructed

subgraphs based on activity types, that is, those subgraphs constructed from all

the directed edges of a specific activity type (i.e work, school, social) during a

typical day in the city of Portland. The clustering coefficient of the subnetworks

generated from work, school, and social/recreational activities are: 0.0571, 0.0557,

and 0.0575, respectively. The largest clustering coefficient and closest to the over-

all clustering coefficient (C = 0.0584) correponds to the subnetwork constructed

from social/recreational activities. It seems that the whole network, as well as the

selected activity subnetworks, support a hierarchical structure albeit the nature

of such structure (if we choose to characterize by the power law exponent) is not

universal. This agrees with relevant theory [128].

Understanding the temporal properties of networks is critical to the study of

superimposed dynamics such as the spread of epidemics on networks. Most studies

of superimposed processes on networks assumes that the contact structure is fixed

(see for example [141, 142, 143, 144, 145, 146, 147, 148, 149]). Here, we take a look

at the time evolution of the largest connected component of the location-based

network of the city of Portland (Figure 5.4). We have observed that a sharp tran-

sition occurs at about 6 a.m. In fact, by 7 a.m. the size of the largest component

includes approximately 60% of the locations (nodes). Table 3 shows the size of the

largest component just before and after the sharp transition occurs.

Let Xm(t) be the number of components of size m at time t. Then X(t) =∑
m≥1 Xm(t) is the total number of components at time t (Figure 5.5(a)). Fur-
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Figure 5.3: Log-log plots of the clustering coefficient as a function of the out-
degree for subnetworks constructed from work activities, school activities, social
activities, and all the activities. The dotted line has slope −1. Notice the scaling
k−1 for the school and social/recreational activities. However, for the subnetwork
constructed from work activities, the clustering coefficient is almost independent
of the out-degree k.

thermore, the probability P (m) that a randomly chosen node (location) belongs

to a component of size m follows a power law that gets steeper in time as the giant

component forms (Figure 5.5(b)). To identify the relevance of the temporal trends,

we computed the out-degree distribution of the network for three different time

intervals: The morning from 6 a.m to 12 p.m.; the workday from 6 a.m. to 6 p.m.;

and the full 24 hours. In the morning phase, the out-degree distribution has a tail

that decays as a power law with γ & 2.7 (for the workday γ & 2.43 and for the

full day γ & 2.4). The distribution of the out-degree data has two scaling regions:

the number of locations is approximately constant for out-degree k < 20 and then

decays as a power law for high degree nodes (Fig. 5.6). The degree distribution
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Figure 5.4: The size of the largest component (cluster) over time. A sharp transi-
tion is observed at about 6 a.m when people move from home to work or school.

for the undirected network (ignoring edge direction) displays power-law behavior,

but with slightly different power-law exponents: 2.3 (morning), 2.48 (work day)

and 2.51 (full day).

The strength of the connections in the location-based network is measured by

the traffic (flow of individuals) between locations in a “typical” day of the city

of Portland. The log-log plot of the out-traffic distributions for three different

periods of time (Fig. 5.7) exhibits power law decay with exponents, γ & 3.56

for the morning, γ & 3.74 for the workday, and γ & 3.76 for the full day. The

out-traffic distribution is characterized by a power law distribution for all values of

the traffic-weight matrix W . This is not the case for the out-degree distribution of

the network (see Figure 5.6) where a power law fits well only for sufficiently large

degree k (k > 10).
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Figure 5.5: (a) The number of components X(t) between 4 a.m. and 8 a.m. (b)
Probability distribution P (m) of the normalized component sizes at two different
times of the day. The component sizes (m) have been normalized by S, the size of
the largest component of the cumulative network during the whole day (Table 1).

The distribution of the total out-traffic per location, wi’s (wi =
∑

j wi,j), is

characterized by two scaling regions. The tail of this distribution decays as a

power law with exponent γ = 2.74 (Fig. 5.8). This is almost the same decay as

the out-degree distribution (γ = 2.7) because the out-degree and the total out-

traffic are highly correlated (with correlation coefficient ρ = 0.94).

5.4 Correlation between out-degree and total out-traffic

The degree of correlation between various network properties depend on the social

dynamics of the population. The systematic generation and resulting structure of

these networks is important to understand dynamic processes such as epidemics

that “move” on these networks. Understanding the mechanisms behind these cor-
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Table 5.3: Size of the largest component just before and after 6 a.m., the time at
which a sharp transition occurs. At midnight, all but 14 locations belong to the
largest component (Table 2).

Time (hrs) Size of largest component

5.6 27,132

5.8 31,511

6.0 50,242

6.2 54,670

6.4 62,346

6.6 76,290

6.8 84,516

7.0 106,160

relations will be useful in modeling fidelity networks.

In the Portland network, the out-degree k and total out-traffic v have a cor-

relation coefficient ρ = 0.94 on a log-log scale with 95% of the nodes (locations)

having out-degree and total out-traffic less than 100 (Fig. 5.9). That is, the den-

sity of their joint distribution F (k, v) is highly concentrated near small values of

the out-degree and total out-traffic distributions. The joint distribution supports

a surface that decays linearly when the density is in loge scale (Figure 5.10).

5.5 Conclusions

Strikingly similar patterns on data from the movement of 1.6 million individuals

in a “typical” day in the city of Portland have been identified at multiple temporal

scales and various levels of aggregation. The analysis is based on the mapping of



96

100 102 104100

101

102

103

104

out!degree

Nu
mb

er 
of 

loc
ati

on
s

morning
workday

100 102 104100

101

102

103

104

out!degree

a) b) 

Figure 5.6: Distribution of the out-degrees of the location-based network of the
city of Portland. There are approximately the same number of nodes (locations)
with out-degree k = 1, 2, ...10. For k > 10 the number of nodes with a given
out-degree decays as a power law P (k) ∝ k−γ with (a) γ & 2.7 for the morning (6
a.m.-12 p.m.), γ & 2.43 for the workday (6 a.m.-6 p.m.) and (b) γ & 2.4 for the
full day.

people’s movement on a weighted directed graph where nodes correspond to phys-

ical locations and where directed edges, connecting the nodes, are weighted by the

number of people moving in and out of the locations during a typical day. The

clustering coefficient, measuring the local connectedness of the graph, scales as k−1

(k is the degree of the node) for sufficiently large k. This scaling is consistent with

that obtained from models that postulate underlying hierarhical structures (few

nodes get most of the action). The out-degree distribution in log-log scale is rela-

tively constant for small k but exhibits power law decay afterwards (P (k) ∝ k−γ).

The distribution of daily total out-traffic between nodes in log-log scale is flat for

small k but exhibits power law decay afterwards. The distribution of the daily

out-traffic of individuals between nodes scales as a power law for all k (degree).
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Figure 5.7: The out-traffic distribution of the location-based network of the city of
Portland follows a power law (P (k) ∝ k−γ) with (a) γ ≈ 3.56 (morning), γ ≈ 3.74
(afternoon), and (b) γ ≈ 3.76 (full day). Hence a few connections have high traffic
but most connections have low traffic.

The observed power law distribution in the out-traffic (edge weights) is there-

fore, supportive of the theoretical analysis of Yook et al. [150] who built weighted

scale-free (WSF) dynamic networks and proved that the distribution of the total

weight per node (total out-traffic in our network) is a power law where the weights

are exponentially distributed.

There have been limited attempts to identify at least some characteristics of

the joint distributions of network properties. The fact that daily out-degree and

total out-traffic data are highly correlated is consistent again with the results ob-

tained from models that assume an underlying hierarhical structure (few nodes

have most of the connections and get most of the traffic (weight)). The Portland

network exhibits a strong linear correlation between out-degree and total out-traffic

on a log-log scale. We use this time series data to look at the network “dynamics”.

As the activity in the network increases, the size of the maximal connected compo-
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Figure 5.8: Distribution of the total out-traffic for the location-based network
of the city of Portland. There are approximately the same number of locations
(nodes) with small total out-traffic. The number of locations where more than 30
people (approximately) leave each day decays as a power law with γ & 2.74.

nent exhibits threshold behavior, that is, a “giant” connected component, suddenly

emerges. The study of superimposed processes on networks such as those associ-

ated with the potential deliberate release of biological agents needs to take into

account the fact that traffic is not constant. Planning, for example, for worst-case

scenarios requires knowledge of edge-traffic, in order to characterize the temporal

dynamics of the largest connected network components [151].
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Figure 5.9: Correlation between the out-degree and the total out-traffic. The
correlation coefficient is ρ = 0.94 on a log-log scale. Most (95%) of the locations
have fewer than 100 people leaving during the day.



100

Figure 5.10: (a) Joint distribution F (k, v) plot (b) loge density of F (k, v) plot
between the out-degree k and the total out-traffic v in the location-based network
of the city of Portland.
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